Читаем Математическая планета. Путешествие вокруг света полностью

Одинаково ли понимается случайность во всех странах мира? Ответить на этот вопрос нелегко. В некоторых культурах считается, что случайность находится в руках богов и представляет собой выражение их воли. Чтобы узнать волю богов, верующие бросают камни, кости или изучают внутренности животных. В других культурах случайность сводится к количественной оценке возможных исходов, определяемой на основе составных элементов события, как, например, в лотереях или игре в кости.

Так или иначе, азартные игры встречаются практически повсеместно и не зависят от преобладающей доктрины — детерминизма или недетерминизма.

На следующей фотографии изображены две игральные кости с индонезийского острова Ломбок. Они в действительности представляют собой волчки, на которых нарезаны четыре грани, как на игральных кубиках. Во время игры волчки вращаются и падают на одну из четырех граней. Однако не все грани волчка различны — на двух противоположных гранях изображена монета, на двух других — инкрустированы кусочки перламутра. При броске любой из этих двух костей возможны всего два исхода. Обозначим их П (перламутр) и М (монета).



Игральные кости с острова Ломбок (Индонезия).


На одной из игральных костей на гранях М выгравирована еще одна фигура — медный выпуклый диск. Равновероятны ли возможные исходы? Изучив форму игральных костей, можно предположить, что нет: одни грани тяжелее других, поэтому вероятность выпадания граней отличается. Но окончательный ответ можно получить только одним способом: раскрутить игральную кость несколько раз и зафиксировать результаты. Из 20 бросков М выпало только в двух случаях. Тот, кто ставит на М, будет выигрывать редко. После нескольких бросков становится понятно, что эта игральная кость не удовлетворяет основному требованию азартной игры — возможные исходы неравновероятны. Делать ставку в такой игре нет смысла, так как исход можно предугадать с уверенностью в 80 %.


Дадду (Индонезия и Малайзия)


Дадду — азартная игра в кости, в которую играют в Индонезии, а также в Малайзии, где она называется селебор. В дадду играют двумя одинаковыми кубиками, грани которых раскрашены следующим образом.



В игре участвуют четыре игрока, которых мы обозначим А, В, С и D. Кости переходят от игрока к игроку по часовой стрелке. Возможны три исхода: оттонг (выигрыш: В), мате (проигрыш: П) или эланг (переход хода: X).



Игру начинает игрок А. Если А выигрывает (В), то бросает кости снова. Если А проигрывает (П) или же не выигрывает и не проигрывает (X), то ход переходит к В. Если В выигрывает (В), то А проигрывает, если В проигрывает (П), А выигрывает (В). Если В не выигрывает и не проигрывает (X), кости возвращаются игроку А. Игра продолжается до тех пор, пока один из двух игроков, А или В, не проиграет. Далее в игру вступает С, и победитель играет с ним. После того как в этой паре определится победитель, он играет с D, и так далее. Игра может продолжаться бесконечно — условия ее завершения определяют сами игроки. Игроки делают ставки, как правило, равной величины.

Вероятности того, что первый игрок выиграет (В), проиграет (П) или передаст кости следующему игроку, равны:


Построим дерево вероятностей:


В этой игре вероятность выигрыша А постепенно устанавливается в районе 50 %.

Здесь основную роль играет соотношение трех вероятностей:

P(B) = 5/36 = P(П) => p = q.

P(X) = 26/36 => r = 1 — 2p

Вероятность выигрыша А по ходу игры постепенно приближается к 50 %:


Бола адил (остров Нуса Лембонган)


В эту азартную игру играют на вогнутой квадратной доске размером 7 х 7 = 49 клеток. Игроки бросают шарик на доску так, что он несколько раз отскакивает от краев и останавливается в углублении одной из клеток, которая и будет выигрышной. Центральная клетка имеет номер 20. В остальных 48 клетках нарисованы фигуры (круг, треугольник или крест) разных цветов (черного, желтого, зеленого или красного).

Фигуры одного цвета располагаются на диагоналях, как показано на следующей фотографии.



Доска для игры в бола адил.


Каждая фигура каждого цвета повторяется на доске четыре раза. Следовательно, на 48 клетках изображены 16 кругов (4 черных, 4 красных, 4 желтых и 4 зеленых), 16 треугольников и 16 крестов. Ставки делаются на дополнительной доске размером 3 х 4 = 12 клеток, пронумерованных от 1 до 12.



Доска для ставок в игре бола адил.


Если клетка угадана верно, ставка умножается на 10. Можно ставить на одну или более клеток — в этом случае на 10 умножается не вся ставка, а лишь ее часть, соответствующая клетке, где остановился шарик. Предположим, что игрок поставил 30 тысяч рупий, разделив ставку между клетками под номером 4 (черный треугольник) и 8 (черный круг). Если шарик остановится на клетке, где изображен черный круг, игрок получит 130 тысяч рупий — в 10 раз больше, чем ставка в этой клетке (15 тысяч рупий). Вероятность выигрыша при ставке на каждую клетку равна:

P = 1/49 = 2,04%

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука