Читаем Математические головоломки полностью

К логарифмическим диковинкам можно было бы с полным основанием отнести и счетную линейку – «деревянные логарифмы», – если бы этот остроумный прибор не сделался благодаря своему удобству столь же обычным счетным орудием для техников, как десятикосточковые счеты для конторских работников. Привычка угашает чувство изумления перед прибором, работающим по принципу логарифмов и тем не менее не требующим от пользующихся им даже знания того, что такое логарифм.

Логарифмы на эстраде

Самый поразительный из номеров, выполняемых перед публикой профессиональными счетчиками, без сомнения, следующий. Предуведомленные афишей, что счетчик-виртуоз будет извлекать в уме корни высоких степеней из многозначных чисел, вы заготовляете дома путем терпеливых выкладок 31-ю степень какого-нибудь числа и намерены сразить счетчика 35-значным числовым линкором. В надлежащий момент вы обращаетесь к счетчику со словами:

– А попробуйте извлечь корень 31-й степени из следующего 35-значного числа! Запишите, я продиктую.

Виртуоз-вычислитель берет мел, но прежде чем вы успели открыть рот, чтобы произнести первую цифру, у него уже написан результат: 13.

Не зная числа, он извлек из него корень, да еще 31-й степени, да еще в уме, да еще с молниеносной быстротой!..

Вы изумлены, уничтожены, а между тем во всем этом нет ничего сверхъестественного. Секрет просто в том, что существует только одно число, именно 13, которое в 31-й степени дает 35-значный результат. Числа, меньшие 13, дают меньше 35 цифр, бóльшие – больше.

Откуда, однако, счетчик знал это? Как разыскал он число 13? Ему помогли логарифмы, двузначные логарифмы, которые он помнит наизусть для первых 15–20 чисел. Затвердить их вовсе не так трудно, как кажется, особенно если пользоваться тем, что логарифм составного числа равен сумме логарифмов его простых множителей. Зная твердо логарифмы 2, 3 и 7[12], вы уже знаете логарифмы чисел первого десятка; для второго десятка требуется помнить логарифмы еще четырех чисел.

Как бы то ни было, эстрадный вычислитель мысленно располагает следующей табличкой двузначных логарифмов.

Изумивший вас математический трюк состоял в следующем:

Искомый логарифм может заключаться между

В этом интервале имеется логарифм только одного целого числа, именно 1,11 – логарифм 13. Таким путем и найден ошеломивший вас результат. Конечно, чтобы быстро проделать все это в уме, надо обладать находчивостью и сноровкой профессионала, но, по существу, дело, как видите, достаточно просто. Вы и сами можете теперь проделывать подобные фокусы, если не в уме, то на бумаге.

Пусть вам предложена задача: извлечь корень 64-й степени из 20-значного числа.

Не осведомившись о том, чтó это за число, вы можете объявить результат извлечения: корень равен 2.

В самом деле ; он должен, следовательно, заключаться между  и , т. е. между 0,29 и 0,32. Такой логарифм для целого числа только один: 0,30…, т. е. логарифм числа 2.

Вы даже можете окончательно поразить загадчика, сообщив ему, какое число он собирался вам продиктовать: знаменитое «шахматное» число

264= 18 446 744 073 709 551 616.

Логарифмы на животноводческой ферме

ЗАДАЧА

Количество так называемого «поддерживающего» корма (т. е. то наименьшее количество его, которое лишь пополняет траты организма на теплоотдачу, работу внутренних органов, восстановление отмирающих клеток и т. п.)[13]пропорционально наружной поверхности тела животного. Зная это, определите калорийность поддерживающего корма для вола, весящего 420 кг, если при тех же условиях вол 630 кг весом нуждается в 13 500 калориях.

РЕШЕНИЕ

Чтобы решить эту практическую задачу из области животноводства, понадобится, кроме алгебры, привлечь на помощь и геометрию. Согласно условию задачи искомая калорийность х пропорциональна поверхности (s) вола, т. е.

где s1 — поверхность тела вола, весящего 630 кг. Из геометрии мы знаем, что поверхности (s) подобных тел относятся, как квадраты их линейных размеров (l), а объемы (и, следовательно, веса) – как кубы линейных размеров. Поэтому

откуда

С помощью логарифмических таблиц находим:

х = 10 300.

Вол нуждается в 10 300 калориях.

Логарифмы в музыке

Музыканты редко увлекаются математикой; большинство их, питая к этой науке чувство уважения, предпочитают держаться от нее подальше. Между тем музыканты – даже те, которые не проверяют, подобно Сальери у Пушкина, «алгеброй гармонию», – соприкасаются с математикой гораздо чаще, чем сами подозревают, и притом с такими «страшными» вещами, как логарифмы.

Позволю себе по этому поводу привести отрывок из статьи нашего покойного физика проф. А. Эйхенвальда[14].

«Товарищ мой по гимназии любил играть на рояле, но не любил математики. Он даже говорил с оттенком пренебрежения, что музыка и математика друг с другом ничего не имеют общего. «Правда, Пифагор нашел какие-то соотношения между звуковыми колебаниями, – но ведь как раз пифагорова-то гамма для нашей музыки и оказалась неприменимой».

Перейти на страницу:

Все книги серии Простая наука для детей

Похожие книги