Читаем Математические головоломки полностью

т. е. около 42 тысяч рублей. При таких условиях не обидно дать и лошадь в придачу.

Вознаграждение воина

ЗАДАЧА

Из другого старинного русского учебника математики, носящего пространное заглавие:

«Полный курс чистой математики, сочиненный Артиллерии Штык-Юнкером и Математики партикулярным Учителем Ефимом Войтяховским в пользу и употребление юношества и упражняющихся в Математике» (1795), заимствую следующую задачу:

«Служившему воину дано вознаграждение за первую рану 1 копейка, за другую – 2 копейки, за третью – 4 копейки и т. д. По исчислению нашлось, что воин получил всего вознаграждения 655 руб. 35 коп. Спрашивается число его ран».

РЕШЕНИЕ

Составляем уравнение

65 535 = 1 + 2 + 272 + 23 + … + 2x-1,

или

откуда имеем:

65 536 = 2x и x = 16

– результат, который легко находим путем испытаний.

При столь великодушной системе вознаграждения воин должен получить 16 ран и остаться при этом в живых, чтобы удостоиться награды в 655 руб. 35 коп.

<p>Глава девятая.</p><p>СЕДЬМОЕ МАТЕМАТИЧЕСКОЕ ДЕЙСТВИЕ</p>

Седьмое действие

Мы упоминали уже, что пятое действие – возвышение в степень – имеет два обратных. Если

аb = с,

то разыскание а есть одно обратное действие – извлечение корня; нахождение же b – другое, логарифмирование. Полагаю, что читатель этой книги знаком с основами учения о логарифмах в объеме школьного курса. Для него, вероятно, не составит труда сообразить, чему, например, равно такое выражение:

Нетрудно понять, что если основание логарифмов а возвысить в степень логарифма числа b, то должно получиться это число b.

Для чего были придуманы логарифмы? Конечно, для ускорения и упрощения вычислений. Изобретатель первых логарифмических таблиц, Непер, так говорит о своих побуждениях:

«Я старался, насколько мог и умел, отделаться от трудности и скуки вычислений, докучность которых обычно отпугивает весьма многих от изучения математики».

В самом деле, логарифмы чрезвычайно облегчают и ускоряют вычисления, не говоря уже о том, что они дают возможность производить такие операции, выполнение которых без их помощи очень затруднительно (извлечение корня любой степени).

Не без основания писал Лаплас, что «изобретение логарифмов, сокращая вычисления нескольких месяцев в труд нескольких дней, словно удваивает жизнь астрономов». Великий математик говорит об астрономах, так как им приходится делать особенно сложные и утомительные вычисления. Но слова его с полным правом могут быть отнесены ко всем вообще, кому приходится иметь дело с числовыми выкладками.

Нам, привыкшим к употреблению логарифмов и к доставляемым ими облегчениям выкладок, трудно представить себе то изумление и восхищение, которое вызвали они при своем появлении. Современник Непера, Бригг, прославившийся позднее изобретением десятичных логарифмов, писал, получив сочинение Непера: «Своими новыми и удивительными логарифмами Непер заставил меня усиленно работать и головой и руками. Я надеюсь увидеть его летом, так как никогда не читал книги, которая нравилась бы мне больше и приводила бы в большее изумление». Бригг осуществил свое намерение и направился в Шотландию, чтобы посетить изобретателя логарифмов. При встрече Бригг сказал:

«Я предпринял это долгое путешествие с единственной целью видеть вас и узнать, помощью какого орудия остроумия и искусства были вы приведены к первой мысли о превосходном пособии для астрономии – логарифмах. Впрочем, теперь я больше удивляюсь тому, что никто не нашел их раньше, – настолько кажутся они простыми после того, как о них узнаешь».

Соперники логарифмов

Ранее изобретения логарифмов потребность в ускорении выкладок породила таблицы иного рода, с помощью которых действие умножения заменяется не сложением, а вычитанием. Устройство этих таблиц основано на тождестве

в верности которого легко убедиться, раскрыв скобки.

Имея готовые четверти квадратов, можно находить произведение двух чисел, не производя умножения, а вычитая из четверти квадрата суммы этих чисел четверть квадрата их разности. Те же таблицы облегчают возвышение в квадрат и извлечение квадратного корня, а в соединении с таблицей обратных чисел упрощают и действие деления. Их преимущество перед таблицами логарифмическими состоит в том, что с помощью их получаются результаты точные, а не приближенные. Зато они уступают логарифмическим в ряде других пунктов, практически гораздо более важных. В то время как таблицы четвертей квадратов позволяют перемножать только два числа, логарифмы дают возможность находить сразу произведение любого числа множителей, а кроме того – возвышать в любую степень и извлекать корни с любым показателем (целым или дробным). Вычислять, например, сложные проценты с помощью таблиц четвертей квадратов нельзя.

Перейти на страницу:

Все книги серии Простая наука для детей

Похожие книги