Читаем Математические модели в естественнонаучном образовании полностью

Пример. Предположим, что рассматривается гипотетическая популяция с тремя стадиями жизни: яйцо, личинка и взрослая особь (соответственно абитуриент, бакалавр и магистр математического образования). Наша условная популяция такова, что особи прогрессируют от яйца к личинке за один промежуток времени, а от личинки к взрослой особи за другой. Наконец, взрослые особи откладывают яйца и отмирают на следующем этапе (находят своё призвание в другой области и не трудоустраиваются по специальности). Чтобы формализовать это, обозначим за  количество яиц в момент времени , за  количество личинок в момент времени , за  количество взрослых особей в момент времени .

Предположим, после сбора данные обнаруживается, что только 4% яиц выживают, чтобы стать личинками, только 39% личинок доживают до взрослой жизни, а взрослые особи в среднем производят по 73 яйца. Это может быть выражено тремя уравнениями: , , .

Система из трех разностных уравнений является моделью популяции насекомых. Обратите внимание, поскольку уравнения не содержат более сложных операций, чем те, которые используются при написании уравнении прямой, оправданно называть эту модель линейной. Также обратите внимание, если захотим использовать эту модель для прогнозирования численности будущих популяций, понадобятся три начальных значения, ,  и , по одному для каждой стадии. Поскольку три уравнения связаны между собой (ведь популяция одной стадии развития появляется в формуле, дающей будущую популяцию другой стадии), эта система разностных уравнений несколько сложнее, чем линейные модели из предыдущей главы.

Вопросы для самопроверки:

– Приведенный пример может быть фактически описан моделью , где  – количество взрослых. Объясните, почему?

Конечно, если поймем, что  описывает данную популяцию, то сразу узнаем, что популяция будет расти экспоненциально, увеличиваясь в 1.1388 раза на каждые три временных интервала.

Пример. Повторно рассмотрим приведенный выше пример, но предположим, что вместо того, чтобы умереть (уйти из профессии), 65% взрослых выживают на протяжении дополнительного временного шага (работают вплоть до пенсии и далее). Тогда модель становится немного сложнее: , , .

Опять же, правомерно называть эту модель линейной, так как все члены имеют первую степень. Однако из-за произведенной модификации уже не ясно, как выразить рост популяции одним уравнением. Очевидно, изменение модели должно привести к еще более быстрому росту популяции. Взрослые особи, которые живут дольше, могут производить больше яиц, производя еще больше взрослых особей, которые выживают дольше, и так далее. Однако новые темпы роста отнюдь не очевидны.

Пример. Предположим, нас интересует лес, состоящий из двух видов деревьев, где  и  обозначают количество каждого вида в лесу в год  (дубы и берёзки, аналогично физики и математики, информатики и технологии). Когда дерево умирает, на его месте растет новое дерево, но новое дерево может быть любого вида. Чтобы быть конкретным, предположим, что деревья вида  относительно долго живут, и только 1% умирает в данный год . С другой стороны, деревьев вида  погибает 5%. Поскольку они быстро растут, деревья , однако, с большей вероятностью преуспеют в завоевании свободного пространство, оставленного мертвым деревом; 75% всех свободных мест достаются деревьям вида , и только 25% достаются деревьям вида . Все это можно выразить с помощью равенств , .

Вопросы для самопроверки:

– Объясните смысл каждой операции в этих уравнениях.

После упрощения модель представляет собой систему из двух линейных разностных уравнений



,



.

В отличие от предыдущих двух примеров, нет очевидного предположения о том, как будут вести себя популяции, смоделированные этими уравнениями.

Чтобы прийти к пониманию, предположим, что популяция начинается с  и . Эти начальные значения численности популяции могли бы описывать лес, в котором большинство деревьев  были выборочно вырублены ранее. Что произойдет с популяцией с течением времени? Компьютерный эксперимент показывает результаты в таблице 2.1.

Таблица 2.1.  моделирование леса

Год            

0      10      990

1      22.30      977.70

2      34.35      965.65

3      46.17      953.83

4      57.74      942.26

5      69.09      930.91

…      …      …

10      122.50      877.50

…      …      …

50      401.04      598.96

…      …      …

100      543.44      456.56

…      …      …

500      624.97      375.03

…      …      …

1000      625      375

…      …      …

Перейти на страницу:

Похожие книги

Павел I
Павел I

Император Павел I — фигура трагическая и оклеветанная; недаром его называли Русским Гамлетом. Этот Самодержец давно должен занять достойное место на страницах истории Отечества, где его имя все еще затушевано различными бездоказательными тенденциозными измышлениями. Исторический портрет Павла I необходимо воссоздать в первозданной подлинности, без всякого идеологического налета. Его правление, бурное и яркое, являлось важной вехой истории России, и трудно усомниться в том, что если бы не трагические события 11–12 марта 1801 года, то история нашей страны развивалась бы во многом совершенно иначе.

Александр Николаевич Боханов , Алексей Михайлович Песков , Алексей Песков , Всеволод Владимирович Крестовский , Евгений Петрович Карнович , Казимир Феликсович Валишевский

Биографии и Мемуары / История / Проза / Историческая проза / Учебная и научная литература / Образование и наука / Документальное
История алхимии. Путешествие философского камня из бронзового века в атомный
История алхимии. Путешествие философского камня из бронзового века в атомный

Обычно алхимия ассоциируется с изображениями колб, печей, лабораторий или корня мандрагоры. Но вселенная златодельческой иконографии гораздо шире: она богата символами и аллегориями, связанными с обычаями и религиями разных культур. Для того, чтобы увидеть в загадочных миниатюрах настоящий мир прошлого, мы совершим увлекательное путешествие по Древнему Китаю, таинственной Индии, отправимся в страну фараонов, к греческим мудрецам, арабским халифам и европейским еретикам, а также не обойдем вниманием современность. Из этой книги вы узнаете, как йога связана с великим деланием, зачем арабы ели мумии, почему алхимией интересовались Шекспир, Ньютон или Гёте и для чего в СССР добывали философский камень. Расшифровывая мистические изображения, символизирующие обретение алхимиками сверхспособностей, мы откроем для себя новое измерение мировой истории. Сергей Зотов — культурный антрополог, младший научный сотрудник библиотеки герцога Августа (Вольфенбюттель, Германия), аспирант Уорикского университета (Великобритания), лауреат премии «Просветитель» за бестселлер «Страдающее Средневековье. Парадоксы христианской иконографии». 

Сергей О. Зотов , Сергей Олегович Зотов

Религиоведение / Учебная и научная литература / Образование и наука
Россия во французской прессе периода Революции и Наполеоновских войн (1789–1814)
Россия во французской прессе периода Революции и Наполеоновских войн (1789–1814)

Предлагаемая монография стала результатом многолетней работы авторов над темой изображения России во французской прессе в период Революции и Наполеоновских войн. Двадцатипятилетие 1789-1814 гг. характеризовалось непростыми взаимоотношениями России и Франции, то воевавших друг с другом, то бывших союзниками. Авторы анализируют механизмы функционирования прессы и управления ею со стороны государства, а также то, как публикации в центральных и региональных газетах меняли общественное мнение о Российской империи и об отдельных аспектах ее жизни. Кроме материалов прессы, авторы активно привлекают архивные источники и опубликованные письменные свидетельства эпохи.В формате PDF A4 сохранен издательский макет.

Андрей Александрович Митрофанов , Евгения Александровна Прусская , Николай Владимирович Промыслов

История / Учебная и научная литература / Образование и наука