Читаем Математические модели в естественнонаучном образовании полностью

Более интересный вопрос заключается в том, можно ли найти одну матрицу, умножение на которую моделирует совокупное влияние на популяцию засушливого года, за которым следовал дождливый год? Хотя и очевидно равенство , но существует ли матрица  такая, что ?

Казалось бы, что может быть проще, для нахождения  достаточно переставить скобки в уравнении , записав его в виде , тогда искомая матрица . Но для этого предстоит научиться перемножать две матрицы  и  так, чтобы всегда новая матрица  была определена, причем матричное умножение должно обладать свойством ассоциативности. Как же выглядит эта матрица ? Вместо того, чтобы экспериментировать на конкретных числах, введём обозначения , , . Таким образом , , , . Подставив  и  в  и , получим , , или после перестановки, , . Что в матричной форме записи примет вид . Это указывает на то, как нужно определить произведение двух матриц:

Обратите внимание, что первый столбец произведения получается в результате умножения строк матрицы  на первый столбец матрицы , воспринимаемый как вектор-столбец, а второй столбец произведения получается умножением  на второй столбец из .

Определение. Произведением двух матриц называется новая матрица, столбцы которой находят путем умножения строк матрицы первого множителя на каждый из столбцов матрицы второго множителя.

Это означает, чтобы перемножить две матрицы, когда правая имеет по  элементов в каждом столбце, левая должна иметь по  элементов в каждой строке.

Пример. .

Интересно то, что если умножать две вышеуказанные матрицы в обратном порядке, правую на левую, вместо левой на правую, то получится другой результат.

Пример. .

Для большинства матриц  и  получается . То есть матричное умножение не является коммутативным. Порядок множителей имеет значение.

Вопросы для самопроверки:

– Ожидается ли с биологической точки зрения, что влияние на лес сухого года, за которым следует влажный год, будет точно таким же, как у влажного года, после которым будет сухой год? Какое это имеет отношение к замечанию о некоммутативности матричного умножения?

Обратите внимание, что, хотя произведение 2х2 матрицы на 2х1 вектор столбец справа имеет смысл, когда вектор размещен слева произведение не имеет смысла. Потому что в каждой строке есть только один элемент имеет, но в каждом столбце по два элемента, определение матричного умножения окажется неприменимым. Поскольку векторы пишем в виде столбцов, это означает, что всегда нужно матрицы помещать слева от векторов в таких произведениях.

Тот факт, что для матриц умножение не является коммутативным, то есть порядок множителей имеет значение, является существенным отличием матричной алгебры от привычной арифметики. Важно при использовании матриц всегда помнить об этом.

К счастью, хотя и не будем приводить тому строгое доказательство, матричное умножение является ассоциативным: при умножении любых трех матриц . Следовательно, можно перегруппировать множители на своё усмотрение, результат умножения не изменится. Дело в том, что произведение двух матриц было определено так, чтобы  имело место в частном случае, когда  является вектором. Требуется лишь повторить выкладки и согласно определения убедиться в истинности равенства для любой матрицы .

Конечно, требуется некоторая практика, чтобы освоиться с матричной алгеброй, для этого есть упражнения. Большинство используют компьютер для выполнения матричных вычислений, особенно когда размеры матриц велики. Как только понимаете, как выполнять умножение, процесс становится утомительным для ручного счета. Тем не менее, нужно уметь делать простые ручные вычисления, чтобы понимать, как эффективно использовать компьютер.

Есть еще несколько понятий и правил, которые используются при выполнении операций над векторами и матрицами. Поскольку у нас есть термины (векторы и матрицы) для массивов чисел, удобно иметь особый термин и для отдельных чисел.

Определение. Скаляр – это одно число.

Определение. Чтобы умножить вектор или матрицу на скаляр, умножьте каждую их компоненту на этот скаляр.

Пример. .

Определение. Чтобы сложить два вектора или две матрицы, складывайте соответствующие компоненты. Слагаемые должны быть одинакового размера.

Пример. .

Определение. Вектор, все компоненты которого равны нулю, называется нулевым вектором и обозначается как .

Векторы и матрицы также подчиняются дистрибутивным законам умножения относительно сложением, а именно: , .

Наконец, хотя матричное умножение некоммутативно, можно менять порядок множителей матрицы и скаляра, например, .

Задачи для самостоятельного решения:

2.1.1. Вычислите без помощи компьютера

а.

б. 

в. 

г. 

2.1.2. Объясните, почему произведение  не определено.

2.1.3. Для ,  и  без компьютера найдите значения выражений ниже. Затем проверьте ответы с помощью MATLAB. Матрицы в MATLAB вводятся так:

 A=[-1,2;1,1]

а.

б.

в.

г.

д.

е. Докажите, что , а .

2.1.4. Выполните пункты (а-е) из предыдущего задания для ,  и . Cначала без компьютера, затем проверьте свои ответы с помощью MATLAB.

Перейти на страницу:

Похожие книги

Павел I
Павел I

Император Павел I — фигура трагическая и оклеветанная; недаром его называли Русским Гамлетом. Этот Самодержец давно должен занять достойное место на страницах истории Отечества, где его имя все еще затушевано различными бездоказательными тенденциозными измышлениями. Исторический портрет Павла I необходимо воссоздать в первозданной подлинности, без всякого идеологического налета. Его правление, бурное и яркое, являлось важной вехой истории России, и трудно усомниться в том, что если бы не трагические события 11–12 марта 1801 года, то история нашей страны развивалась бы во многом совершенно иначе.

Александр Николаевич Боханов , Алексей Михайлович Песков , Алексей Песков , Всеволод Владимирович Крестовский , Евгений Петрович Карнович , Казимир Феликсович Валишевский

Биографии и Мемуары / История / Проза / Историческая проза / Учебная и научная литература / Образование и наука / Документальное
История алхимии. Путешествие философского камня из бронзового века в атомный
История алхимии. Путешествие философского камня из бронзового века в атомный

Обычно алхимия ассоциируется с изображениями колб, печей, лабораторий или корня мандрагоры. Но вселенная златодельческой иконографии гораздо шире: она богата символами и аллегориями, связанными с обычаями и религиями разных культур. Для того, чтобы увидеть в загадочных миниатюрах настоящий мир прошлого, мы совершим увлекательное путешествие по Древнему Китаю, таинственной Индии, отправимся в страну фараонов, к греческим мудрецам, арабским халифам и европейским еретикам, а также не обойдем вниманием современность. Из этой книги вы узнаете, как йога связана с великим деланием, зачем арабы ели мумии, почему алхимией интересовались Шекспир, Ньютон или Гёте и для чего в СССР добывали философский камень. Расшифровывая мистические изображения, символизирующие обретение алхимиками сверхспособностей, мы откроем для себя новое измерение мировой истории. Сергей Зотов — культурный антрополог, младший научный сотрудник библиотеки герцога Августа (Вольфенбюттель, Германия), аспирант Уорикского университета (Великобритания), лауреат премии «Просветитель» за бестселлер «Страдающее Средневековье. Парадоксы христианской иконографии». 

Сергей О. Зотов , Сергей Олегович Зотов

Религиоведение / Учебная и научная литература / Образование и наука
Россия во французской прессе периода Революции и Наполеоновских войн (1789–1814)
Россия во французской прессе периода Революции и Наполеоновских войн (1789–1814)

Предлагаемая монография стала результатом многолетней работы авторов над темой изображения России во французской прессе в период Революции и Наполеоновских войн. Двадцатипятилетие 1789-1814 гг. характеризовалось непростыми взаимоотношениями России и Франции, то воевавших друг с другом, то бывших союзниками. Авторы анализируют механизмы функционирования прессы и управления ею со стороны государства, а также то, как публикации в центральных и региональных газетах меняли общественное мнение о Российской империи и об отдельных аспектах ее жизни. Кроме материалов прессы, авторы активно привлекают архивные источники и опубликованные письменные свидетельства эпохи.В формате PDF A4 сохранен издательский макет.

Андрей Александрович Митрофанов , Евгения Александровна Прусская , Николай Владимирович Промыслов

История / Учебная и научная литература / Образование и наука