Однако при использовании вычислительных машин различия в сложности выполнения операций булевой алгебры и арифметических операций значительно ослабляются.
8. Типы булевых функций
. В алгебре логики из множества v = 22n различных булевых функций1)
2)
3)
- 518 -
следуют в порядке их номеров, то противоположные друг другу наборы располагаются симметрично относительно середины их расположения. Это значит, что строка значений самодвойственной функции должна быть антисимметричной относительно своей середины. Самодвойственная функция полностью определяется заданиемее значений на половине всех наборов (остальные значения определяются по условию антисимметричности), поэтому число независимых наборов равно
4)
5)
Рассмотренные типы функций замкнуты относительно операции суперпозиции, т. е. суперпозиция любого числа булевых функций данного типа является функцией того же типа.
9. Функциональная полнота
. Система функций, суперпозицией которых может быть представлена любая функция из некоторого множества булевых функций, называетсяРассмотренные в (1.7) функционально полные системы комплектовались путем сопоставления различных выражений для булевых функций. Общее решение вопроса основано на
- 519 -
С помощью табл. 6 можно следующим образом охарактеризовать свойства булевых функций с позиций функциональной полноты (звездочкой отмечены свойства, которыми обладает данная функция:
Отсюда видно, что рассмотренные в (9.4) системы операций (дизъюнкция и отрицание, конъюнкция и отрицание, штрих Шеффера, стрелка Пирса) удовлетворяют теореме о функциональной полноте. Система операций алгебры Жегалкина (сумма по модулю 2 и конъюнкция) вместе с константой 1 образует ослабленно функционально полную систему.
Выбрав любую элементарную функцию и дополнив ее одной или несколькими другими функциями так, чтобы все они вместе удовлетворяли теореме о функциональной полноте, можно выразить через них все другие булевы функции. Например, в основу одного из таких комплектов можно положить импликацию и константу 0. Тогда x1
∨ x2 = (x1 → x2) → x2 и x̅ = x → 0, а через дизъюнкцию и отрицание выразятся и все остальные функции. В качестве другого функционально полного комплекта можно взять конъюнкцию, эквиваленцию и константу 0. При этом x̅ = x~0 и формулы алгебры логики, построенной на этих операциях, будут двойственны формулам алгебры Жегалкина, если в качестве двойственных символов принять + и ~, а также 1 и 0.