значениями функции. Дальше аналогично обозначаем одинаковыми буквами узлы, из которых выходят пары хn-1
и х̅n-1 с совпадающими предыдущими обозначениями (порядок букв также учитывается) и т. д. до последней пары х1и х̅1. После этого одинаково обозначенные узлы объединяются и проводятся упрощения в соответствии с рис. 197.x ∨ x = x | ||
x ∨ x̅ = 1 | ||
xx = x | ||
xx̅ = 0 |
Так, в схеме рис. 196, б для пар (x3
, x̅3) имеется две комбинации значений (1, 0) и (0, 1). Узлы, из которых выходят пары с комбинациями (1, 0), обозначаем буквойОбъединяя узлы с одинаковыми обозначениями (а и b), приходим к схеме, показанной на рис. 198, которая после замены параллельных контактов совпадает с мостиковой схемой (рис. 193).
Объединяя выходы полного релейного дерева, можно построить контактные схемы и для нескольких функций при условии, что множества наборов значений переменных, на которых эти функции принимают значения 1, не пересекаются. Пусть, например, требуется построить контактную схему с двумя выходами, реализующую функции y1
= x1x2 ∨ x̅1x̅2 и y1 = x1x̅2 ∨ x̅1x̅3. Из таблицы соответствия для этих функцийвидим, что ни на одном наборе значений переменных функции не принимают одновременно значений, равных 1. Следовательно, для построения требуемой контактной схемы можно воспользоваться полным релейным деревом (рис. 199, а)в результате преобразования которого получаем схему с двумя выходами (рис. 199, б).
а | б |
Рис. 199. Построение схемы с двумя выходами:
а - преобразование полного релейного дерева;
б - контактная схема
6. Булевы матрицы.
Для описания контактных схем произвольной структуры с любым числом выходов используются различные типыРис. 200. К определению булевых матриц контактной схемы.
Пусть контактная схема имеет
- 528 -
Произведение булевых матриц определяется, как и для обычных матриц, правилом «строка на столбец», но операциям сложения и умножения действительных чисел соответствуют дизъюнкция и конъюнкция логических переменных и функций. Элементы матрицы C = AB, где А и В - булевые матрицы, выражаются соотношением cij
= ai1b1j ∨ ai2b2j ∨ ... ∨ ainbnj. Произведения матрицы самой на себя выражается как ее степени AA = A2, A2A = A3, ..., An-1A = An.Можно показать, что для любой контактной схемы с
Следует отметить, что элементы матрицы Рi
представляют собой функции всех связей между узлами посредством не более чем7. . Исключение узлов (анализ).
При анализе контактной схемы с помощью булевых матриц сначала записывается матрица непосредственных связей Р, а затем путем возведения ее в соответствующую степень получается матрица полных связей