Неправильное понимание концепций, возникающее у учеников при рассмотрении идеальных примеров, аналогично проблемам, возникающим при отработке обособленных методов. Ученикам дают несложные ситуации, требующие простого применения процедур (а во многих случаях никаких ситуаций и нет). Ученики изучают метод, но, когда им дают математические задачи или нужно использовать математику в реальном мире, они не могут применить его (Organisation for Economic Co-operation and Development, 2013). Реальные задачи зачастую требуют отбора и адаптации методов, применению которых дети никогда не учились и даже не знают о них. В следующей главе мы проанализируем характер содержательных математических задач, позволяющих избежать таких проблем.
В ходе знаменитого научного исследования в Англии я три года отслеживала успеваемость учеников при применении подхода к изучению математики, основанного на практике. Дети снова и снова отрабатывали на уроках обособленные примеры (Boaler, 2002a). Я сравнила их результаты с результатами, полученными в случае, когда ученикам демонстрировали всю сложность математики. При этом предполагалось, что дети должны постоянно размышлять на концептуальном уровне, выбирая и применяя те или иные методы. Два этих подхода к преподаванию математики использовались в разных школах в работе с учениками одинакового происхождения и уровня успеваемости, причем обе школы находились в небогатых районах. Дети, которых учили многократно отрабатывать методы в школе с жесткими требованиями ко времени выполнения заданий, получили гораздо более низкие оценки во время государственного экзамена по математике по сравнению с теми, кого стимулировали размышлять на концептуальном уровне. Во время государственного экзамена (включающего ряд процедурных вопросов) ученики традиционной школы столкнулись с серьезной проблемой: они не знали, какой метод выбрать, чтобы найти ответы. Они многократно отрабатывали методы, но им никогда не предлагали проанализировать ситуацию и выбрать подходящий. Вот размышления двух учеников этой школы о трудностях, с которыми они столкнулись во время экзамена.
Это глупо. Когда ты на уроке выполняешь задание (даже трудное), то получаешь от силы один-два неправильных ответа. Но большинство ответов правильные, и ты думаешь: «Ну вот, когда будет экзамен, я смогу ответить на большинство вопросов правильно». Ведь ты правильно понял все темы. А на самом деле ты ничего не понял (Алан, Эмбер-Хилл).
Все совсем иначе. Все не так, как тебе говорили, — описание, вопрос; все не так, как в учебниках, как объясняет учитель (Гэри, Эмбер-Хилл).
Чересчур упрощенный подход к математике — одна из причин проблем в ее изучении. Вдобавок у учеников не развивается математическое мышление: им внушают, что на уроках математики нет места размышлениям и осмыслению концепций, требуется лишь многократное повторение определенных методов.
В ходе еще одного исследования, которое было проведено в США, мы спрашивали детей, которых обучали математике по модели отработки методов, какова их роль на уроках по этому предмету (Boaler & Staples, 2005). Поразительно много учеников (97%) дали один и тот же ответ: «Максимально сосредоточиться». Этот пассивный акт наблюдения (а не размышлений, построения логических выводов или осмысления) не приводит к пониманию предмета или формированию математического мышления.
Ученикам часто дают практические задания по математике на дом. Но многие данные демонстрируют, что домашние задания в любой форме бесполезны или губительны (подробнее см. главу 6
). У меня есть дети, и домашние задания — самая распространенная причина слез в нашем доме, а математика — предмет, работа над которым дома вызывает у детей самый сильный стресс, особенно если задание представляет собой длинный список разрозненных вопросов.Ученики получают целые страницы домашних заданий по математике. Кажется, никому нет дела до того, как плохо это влияет на обстановку в доме. Но есть надежда: в школах, где заданий на дом не дают, успеваемость не снижается; при этом в семьях учеников существенно повышается качество жизни (Kohn, 2008).