Читаем Математическое мышление. Книга для родителей и учителей полностью

Когда несколько дней спустя я приехала в Лондон, мне пришло электронное письмо от Энди, молодого разработчика курсов из Udacity. Он составил онлайновый мини-курс по примеру 18 × 5, в процессе работы над которым прохожих на улице спрашивали, как они решили бы этот пример, чтобы собрать разные методы. Члены команды были настолько воодушевлены этими идеями, что захотели сразу же выложить их в открытый доступ; в команде говорили даже о том, чтобы изготовить для всех сотрудников Udacity футболки с надписью «18 × 5».

Через несколько месяцев после встречи в Udacity я познакомилась с Люком Бартеле, который был тогда директором Wolfram Alpha — одной из самых важных математических компаний в мире. Люк прочитал о разных методах решения примера 18 × 5, которые я описала в своей книге (Boaler, 2015), и это так заинтересовало его, что он начал спрашивать всех, с кем встречался, как бы они решили этот пример. Я считаю важным рассказать об этой реакции, моментах глубокого воодушевления по поводу абстрактной математической задачи. Почему всем этим пользователям высшей математики, как и маленьким детям, так интересно представлять себе и анализировать разные методы решения на первый взгляд неинтересной задачи, такой как 18 × 5? Возможно, вовлеченность обусловлена тем, что люди отмечают в математике элемент творчества, и тем, что они по-разному видят математические идеи. Это интересно само по себе, но верно и то, что большинство моих знакомых, даже математики высокого уровня, никогда не осознавали, что числа могут быть настолько открытыми, а для решения задач с ними можно использовать так много разных способов. Вовлеченность еще больше усиливается, когда это осознание приходит вместе с глубоким визуальным пониманием математических методов работы.

Я использовала аналогичные задачи в работе с учениками средней школы, студентами Стэнфорда и генеральными директорами компаний. Все они демонстрировали одинаковую вовлеченность. Благодаря этому я поняла, что людей восхищают присущие математике гибкость и открытость. Это наука, которая требует точного мышления, но, когда оно сопровождается изобретательностью, гибкостью и многообразием идей, люди начинают воспринимать ее как живую науку. Учителя могут создавать такое воодушевление на уроках при работе над любыми задачами, предлагая ученикам описать разные способы представления и решения задач и поощряя обсуждение разных способов визуального представления. Они должны уделять внимание выполнению правил работы на уроке и объяснять ученикам, что те должны слушать и уважать мнение друг друга. В главе 7 представлено описание стратегии, которая позволяет добиться этого. Если ученики уважают друг друга и внимательны к одноклассникам, очень интересно наблюдать, с какой вовлеченностью они рассказывают о разных способах решения задачи.

2. Растущие фигуры: сила визуализации

Следующий пример взят из совсем другой среды — занятий летней школы в районе Сан-Франциско, куда отправили учеников с низкой успеваемостью за прошедший учебный год. Вместе со своими студентами из Стэнфорда я преподавала математику в одном из четырех математических классов. Мы решили сосредоточиться на алгебре, но алгебра как таковая, бездумный поиск значения х, не была нашей конечной целью. Мы преподавали ее как инструмент, который можно использовать для решения содержательных, увлекательных задач. Наши ученики только что кончили шестой и седьмой классы, и большинство из них ненавидели математику. Примерно половина получила низшие оценки за прошедший учебный год (подробнее см.: Boaler, 2015; Boaler & Sengupta Irving, 2015).

Разрабатывая учебную программу для летней школы, мы использовали ряд ресурсов, в том числе книги Марка Дрисколла, математические задачи Рут Паркер, а также два учебных плана из Англии — SMILE (Secondary mathematics individualized learning experience — «Опыт индивидуального изучения математики в средней школе») и Points of Departure («Отправные пункты»). Задачу, которая вызвала воодушевление в данном случае, составила Рут Паркер. В ее рамках ученики должны были продолжить показанную в примере 5.1 растущую закономерность, представленную в виде кубиков, и определить, сколько кубиков будет на шаге 100. (Полные рабочие листы со всеми заданиями можно найти в приложении к этой книге.)

ПРИМЕР 5.1. ЗАДАЧА С ФИГУРАМИ

Как вы представляете себе рост фигур?

Материал предоставлен Рут Паркер; задача используется на курсах MEC (Mathematics Education Collaborative).

Перейти на страницу:

Похожие книги

История американской культуры
История американской культуры

Данное учебное пособие по истории культуры США – относительно краткой, но безусловно яркой – написано почитателями и знатоками этой страны, профессорами Т. Ф. Кузнецовой и А. И. Уткиным. Авторы подробно прослеживают, как колонисты, принесшие на новый континент дух старой Англии и идеи религиозного протестантизма, за четыре века интенсивного развития и приема иммигрантов сумели сделать мир своей культуры и разнообразным, и глубоким. Единственная крупная страна, не знавшая феодализма, США заняли видное место в мировой литературе, киноискусстве, архитектуре, популярной музыке, а также в философии, юриспруденции, естественных и технических науках.Учебник рассчитан на студентов, специализирующихся в культурологии и американистике, но как источник расширения представлений об общественной истории, о выдающемся созидательном опыте человечества будет полезен студентам любого профиля, а также широкому кругу читателей, интересующихся историей и культурой.

Анатолий Иванович Уткин , Татьяна Федоровна Кузнецова

Учебники и пособия
Философия
Философия

Автор учебника А.Г. Спиркин — член-корреспондент РАН, создатель популярнейших в 60-80-е годы учебников по философии. Настоящий учебник состоит из четырех частей: вводное слово, где характеризуется предмет философии, рассматривается соотношение философии и мировоззрения; историко-философский раздел; основы общей философии, где представлены учение о бытии, проблемы человека и его бытие в мире, вопросы души, сознания и разума, вопросы теории познания; социальная философия, где дан философский анализ общества, характеризуются его материальные основы, раскрываются и анализируются формы его духовной жизни, рассматриваются тенденции его развития.Для студентов, аспирантов, преподавателей высших учебных заведений.

Александр Георгиевич Спиркин

Философия / Учебники и пособия / Прочая научная литература / Образование и наука