Я преподавала математику на всех уровнях среднего и высшего образования в Англии и США. Кроме того, я изучила сотни заданий по математике на всех уровнях 16-летнего образования в обеих странах и проанализировала, как дети и подростки изучают математику и какие условия благоприятны для этого. Мне удалось накопить богатый опыт — и это большая удача по многим причинам, одна из которых состоит в том, что это помогло мне понять суть истинной вовлеченности и глубокого изучения математики. Я наблюдала, как самые разные школьники и студенты вдохновляются математикой, что дало им прекрасную возможность получить представление о математических концепциях и взаимосвязях между ними. Я пришла к выводу, что и 11-летние ученики, сталкивающиеся с серьезными трудностями в изучении математики, и успешные студенты лучших университетов испытывают одинаковое воодушевление, которое включает в себя такие аспекты, как
Вместо того чтобы анализировать суть вовлеченности бесстрастно и абстрактно, я хочу показать вам пять примеров истинного воодушевления. Я считаю его вершиной вовлеченности. Речь пойдет о ситуациях, которые я наблюдала в разных группах и благодаря которым сделала важные выводы о сути преподавания и задачах, которые открывают такие возможности для обучения. Первый пример взят не из школы, а из особой среды одного из стартапов Кремниевой долины. Он раскрывает один сильнейший аспект воодушевления, который я хотела бы донести до всех учителей математики.
В конце декабря 2012 года, за несколько дней до отъезда в Лондон на праздники, я впервые встретилась с Себастьяном Труном и его командой в Udacity — компании, которая занимается организацией онлайн-курсов. Мне предложили приехать к ним, чтобы дать членам команды консультации по поводу математических курсов и способов создания возможностей для эффективного обучения. В тот день я зашла в просторный офис компании в Пало-Альто и сразу поняла, что попала в стартап Кремниевой долины. Велосипеды на стенах; молодые люди, в основном парни, в футболках и джинсах, погрузились в компьютеры или сидят, обсуждая различные идеи. В офисе не было никаких перегородок, только кабинки и много света. Я прошла мимо кабинок в конференц-зал, расположенный в задней части офиса за стеклянной стеной. Около 15 человек втиснулись в небольшое помещение и сидели на стульях и на полу. Себастьян вышел вперед, пожал мне руку, представил меня присутствующим и пригласил сесть. Затем он начал забрасывать меня вопросами: «Каким должен быть хороший курс математики? Как ее преподавать? Почему ученики не справляются с математикой?» Себастьян сказал, что, по мнению его друга Билла Гейтса, алгебра стала причиной многочисленных неудач с изучением математики в США. Я дерзко ответила: «О, так вам сказал об этом преподаватель Билл Гейтс?» Присутствующие улыбнулись, а Себастьян пораженно застыл. Затем он спросил: «Ладно, а что
Себастьян продолжил забрасывать меня вопросами. Когда он спросил, каким должно быть хорошее задание по математике, я прервала беседу и спросила присутствующих, могу ли я задать
Рис. 5.1.
Визуальные решения примера 18 × 5Затем мы обсудили сходство и различия между этими методами. Когда я изображала их с помощью рисунков, глаза присутствующих становились всё шире. Некоторые начали взволнованно вскакивать с мест. Кто-то сказал, что даже не представлял себе, как много способов анализа абстрактной числовой задачи существует. Другие были поражены тем, что существует визуальное представление такой задачи и оно так наглядно иллюстрирует математику.