Исполнительный директор YouCubed Кэти Уильямс до перехода в Стэнфорд много лет была руководителем направления математики в школьном округе. По работе она встречалась со многими родителями, которые утверждали, что их детям нужно давать материал посложнее, поскольку они продвинутые и умные. Кэти всегда предлагала встретиться с учениками и проводила тест на оценку уровня знаний по математике, который помогал ей определить их потребности. В итоге она неизменно приходила к выводу, что эти ученики хорошо владеют «техническими» аспектами, но не могут уловить смысл математических концепций или объяснить, почему они работают. Например, ученики могли разделить 1 на 3
/4 и получить ответ, но не были способны объяснить, в чем его суть.Кэти объясняла родителям, что математика — обширная дисциплина, которая выходит за рамки скоростных вычислений и процедур и подразумевает понимание концепций. Она показывала им рисунок, на котором изображены три аспекта математики (рис. 6.1).
Рис. 6.1.
Уравновешивание различных аспектов математикиЗатем Кэти объясняла родителям, что их дети сильны в одной области математики и только начинают осваивать другие. Им нужно не столько изучать дополнительный материал, сколько понять тот, который они уже освоили, выйти за рамки многократного повторения одних и тех же процедур и научиться применять математические концепции на практике. Как показано в главе 3
, именно эти аспекты математического мышления находятся в верхних строках списка требований работодателей.Учителя не виноваты в том, что культура элитизма и достижений так распространена в сфере математики: ведь о них, как и об учениках, судят по их достижениям. Виновата культура, в которой математике отводится роль механизма отбора и показателя одаренности.
Нужно, чтобы она превратилась в открытую, обучающую дисциплину, рассчитанную как на сильных учеников, которые сейчас отказываются изучать ее, так и на слабых, не имеющих доступа к тем предметам, которые они вполне могут освоить. Многие согласны с тем, что ученикам необходима установка на позитивное мышление. Но если мы действительно хотим донести эту мысль до них, нам стоит изменить методы подачи и преподавания математики. Я заканчиваю все свои электронные письма подписчикам YouCubed словами «Да здравствует революция!» И нам действительно нужна революция — подразумевающая изменение убеждений в отношении математики как дисциплины, а также потенциала и мышления учеников. Она подразумевает отказ от элитизма и переход от получения результатов к обучению. Эта революция подразумевает принятие математики как многоплановой, красивой дисциплины, которая доступна всем.
Как сделать обучение математике более справедливым? В следующих главах я подробнее расскажу о стратегиях, которые полезны всем ученикам, но некоторые из них специально предназначены для того, чтобы сделать математику более инклюзивной дисциплиной.
1. Предлагайте всем ученикам материал высокого уровня
В следующей главе представлены результаты исследований и рекомендуемые стратегии для увеличения числа учеников, которым дается возможность изучать математику высокого уровня. Сравнительный анализ данных по разным странам показал, что в США меньше детей получают возможность изучать математику высшего уровня по сравнению с другими странами (McKnight et al., 1987; Schmidt, McKnight, & Raizen, 1997). Один из очевидных способов повышения успеваемости и обеспечения равенства состоит в том, чтобы увеличить число учеников, которым предоставляются возможности высокого уровня. В следующей главе я покажу лучшие способы преподавания математики высшего уровня как можно большему количеству учеников.
2. Делайте все возможное для изменения представлений о том, кто может добиться успеха в математике
Исследования Кэрол Дуэк, о которых шла речь в начале этой главы
, показывают: убеждения учителей открывают или закрывают перед учениками путь к успеху, а мышление и преподавание с установкой на данность во многом объясняет тот факт, что в сфере математики и естественных наук сохраняется дискриминация женщин и нацменьшинств. К счастью, эти же исследования показывают, что ученики с мышлением роста способны отказаться от стереотипов и добиться успеха. Необходимо, чтобы учителя формировали установки на рост в отношении своих предметов и прививали их своим ученикам как можно раньше; в главе 1, главе 2 и главе 9 представлен краткий обзор способов, позволяющих это сделать. Установки на рост в отношении математики могут сыграть важнейшую роль в создании более справедливого общества.3. Побуждайте учеников к глубоким размышлениям