Учительница предложила группам учеников поработать с настоящими шнурками, предоставленными одним из членов группы. Она сформулировала задачу, сообщив ученикам, что существует много способов решения этой задачи, а успешная работа над ней потребует правильной коммуникации между членами группы: все должны выслушивать мнение других и давать друг другу возможность обдумать свою работу. Кроме того, учительница объяснила, что ученики получат более высокую оценку за эту задачу, если проиллюстрируют и объяснят свою работу несколькими способами.
Как и в случае многих математических вопросов, для многих учеников самым трудным было начало: нужно было понять, с чего начать. Им предложили составить уравнение, которое поможет купить шнурки. Это открытая постановка задачи, позволяющая самостоятельно определить, что в их уравнении могут быть представлены такие переменные, как число отверстий для шнурков и длина, необходимая для того, чтобы завязать бант. Кроме того, нужно было определить, что переменная
Наблюдая за уроком, я заметила, что многие группы не знали, с чего начать. Мальчик из одной группы сразу заявил: «Я этого не понимаю», а другой согласился с ним: «Я не понимаю вопрос». В этот момент девочка из этой же группы предложила мальчикам еще раз прочесть вопрос вслух. Один мальчик спросил остальных: «Как этот ботинок связан с уравнением?» Другой предложил определить длину своих шнурков. Члены группы начали измерять длину завязки, и в этот момент один мальчик сказал, что им нужно учесть количество отверстий для шнурков. Группа продолжила работу; дети помогали друг другу, задавая вопросы, которые должны была проанализировать группа.
Я наблюдала много подобных ситуаций, когда ученики смогли приступить к решению задачи, подбадривая друг друга, перечитывая задание и задавая друг другу вопросы. Им предлагали прочесть задачу вслух, а когда они не могли двигаться дальше — задавать друг другу вопросы такого рода.
• Что подразумевает этот вопрос?
• Как можно изменить формулировку этого вопроса?
• Каковы основные элементы этой задачи?
В Рейлсайд учителя использовали такой подход: поставить группам задачу, а когда все закончат работу, задать дополнительный вопрос для оценки понимания. Благодаря вопросам, а также поддержке учителей (например, те предлагали иначе сформулировать задачу) ученики научились задавать такие же полезные вопросы друг другу. Вскоре после того, как они начали измерять длину завязок и размышлять о зависимости между ней и количеством отверстий для шнурков, повысился уровень вовлеченности всего класса. Это было обусловлено рядом факторов.
• Работа учителя, который обеспечил продуманную постановку задачи и ходил по классу, задавая ученикам вопросы.
• Сама задача, которая была достаточно открытой и увлекательной, чтобы разные ученики смогли внести свой вклад в ее решение.
• Многоплановость занятия, в ходе которого приветствовались разные способы работы: постановка вопросов, построение диаграмм и выдвижение гипотез.
• Предложение использовать в работе над задачей предмет и идею из реального мира.
• Высокий уровень коммуникации между детьми: они научились поддерживать друг друга, задавая вопросы.
Метод групповой работы используют многие кафедры математики, но они не добиваются таких же высоких показателей успеха учеников и того уровня эффективности работы, который мы видели в Рейлсайд. Одна из причин успеха учеников этой школы состоит в том, что в ней преподают и высоко ценят многоплановую математику, а также учат помогать друг другу.
Распределение ролей
Когда учеников распределили по группам, каждому из них выделили роль в своей группе. В примере 7.6 показан рабочий лист с описанием ролей, который выдается ученикам.