Читаем Математическое мышление. Книга для родителей и учителей полностью

Правила, которые мы устанавливаем для учеников на уроках, способы, которыми мы помогаем им и поощряем их, и сигналы, которые мы им подаем, крайне важны. Но мне хотелось бы обратить особое внимание на то, что подача ученикам сигналов в отношении мышления роста не поможет им, если при этом мы не покажем, что математика — развивающая дисциплина. Далее мы сфокусируемся на стратегиях и методах, которые учителя могут использовать, чтобы преподавать ученикам открытую, развивающую, творческую математику.

Сделайте математику открытой

Преподавайте математику как открытую, развивающую, обучающую дисциплину

Большинство задач по математике, которые используются на уроках и дома, — узкие процедурные вопросы, требующие от учеников выполнения вычислений. Когда ученики большую часть времени занимаются этим, им трудно поверить в то, что математика — развивающая дисциплина. Ведь закрытые вопросы заставляют их думать, что она носит фиксированный характер и ее суть сводится к правильным и неправильным ответам. Некоторые вопросы действительно требуют одного правильного ответа, но они не нужны ученикам для полноценного понимания математики. Если они все же используются, они должны составлять только малую долю всех вопросов. Задачи по математике должны обеспечивать ученикам достаточно пространства для обучения. Вместо того чтобы требовать ответов на вопросы, задачи должны предоставлять им возможность исследовать, творить и развиваться.

Любую математическую задачу можно сделать открытой, и тогда гораздо больше учеников проявят к ней интерес и смогут узнать что-то новое. Ниже описаны четыре полезных приема.

1. Вместо того чтобы предлагать ученикам найти ответ на вопрос, чему равно 1/2 разделить на 1/4, предложите им предположить, сколько будет 1/2 разделить на 1/4, и придать ответу смысл, в том числе с помощью визуального представления решения. Как было сказано в главе 5, когда Кэти Хамфриз предложила ученикам решить задачу «1 разделить на 2/3», она начала с таких слов: «Вероятно, вы знаете правило, с помощью которого можно решить эту задачу, но сегодня оно не имеет значения. Я хочу, чтобы вы объяснили, почему ваше решение имеет смысл».

2. Вместо того чтобы предлагать ученикам упростить выражение 1/3(2x + 15) + 8 (типичная задача, которую ставят на уроках алгебры), предложите им найти все эквивалентные способы представления этого выражения. На рисунке 9.2 приведены примеры ответов.

3. Вместо того чтобы спрашивать учеников, сколько квадратов будет на шаге 100, спросите их, как они представляют себе рост закономерности, и предложите им использовать это понимание для обобщения закономерности до шага 100 (рис. 9.1).


Рис. 9.1. Примеры алгебраических выражений


Рис. 9.2. Ступеньки


Любую математическую задачу можно открыть так, чтобы она обеспечивала ученикам больше пространства для обучения (подробнее см. главу 5). Например, вы можете предложить ученикам обсудить:

• способы восприятия математики;

• способы представления идей;

• различные пути решения задач и реализации стратегий;

• выбранные методы: «Почему вы использовали эти методы? Как они работают?»


Когда ученики работают над открытыми задачами, они не только воспринимают математику как развивающую дисциплину, но и становятся исследователями. Они больше не ищут ответ; они анализируют идеи, устанавливают связи, развиваются и учатся. В процессе исследований они изучают формальную математику — методы и формулы, знания которых требует стандартная учебная программа. Разница в том, что они изучают стандартные методы, когда в них возникает необходимость, что пробуждает мотивацию и заинтересованность в изучении этих методов (Schwartz & Bransford, 1998). Как я уже подчеркивала, лучшие открытые задачи по математике — те, которые относятся к категории «низкий пол, высокий потолок» (см. сборник задач на сайте YouCubed — http://www.youcubed.org/tasks). На мой взгляд, чтобы понять, является ли задача открытой, нужно задать важный вопрос: обеспечивает ли она пространство для обучения?

Призывайте учеников быть математиками

Перейти на страницу:

Похожие книги

История американской культуры
История американской культуры

Данное учебное пособие по истории культуры США – относительно краткой, но безусловно яркой – написано почитателями и знатоками этой страны, профессорами Т. Ф. Кузнецовой и А. И. Уткиным. Авторы подробно прослеживают, как колонисты, принесшие на новый континент дух старой Англии и идеи религиозного протестантизма, за четыре века интенсивного развития и приема иммигрантов сумели сделать мир своей культуры и разнообразным, и глубоким. Единственная крупная страна, не знавшая феодализма, США заняли видное место в мировой литературе, киноискусстве, архитектуре, популярной музыке, а также в философии, юриспруденции, естественных и технических науках.Учебник рассчитан на студентов, специализирующихся в культурологии и американистике, но как источник расширения представлений об общественной истории, о выдающемся созидательном опыте человечества будет полезен студентам любого профиля, а также широкому кругу читателей, интересующихся историей и культурой.

Анатолий Иванович Уткин , Татьяна Федоровна Кузнецова

Учебники и пособия
Философия
Философия

Автор учебника А.Г. Спиркин — член-корреспондент РАН, создатель популярнейших в 60-80-е годы учебников по философии. Настоящий учебник состоит из четырех частей: вводное слово, где характеризуется предмет философии, рассматривается соотношение философии и мировоззрения; историко-философский раздел; основы общей философии, где представлены учение о бытии, проблемы человека и его бытие в мире, вопросы души, сознания и разума, вопросы теории познания; социальная философия, где дан философский анализ общества, характеризуются его материальные основы, раскрываются и анализируются формы его духовной жизни, рассматриваются тенденции его развития.Для студентов, аспирантов, преподавателей высших учебных заведений.

Александр Георгиевич Спиркин

Философия / Учебники и пособия / Прочая научная литература / Образование и наука