Математика может найти смысл даже в вашем завтраке. Представьте, что вы заказали три пышных американских блинчика в своем любимом кафе, и когда официант приносит их и кладет на стол, вы замечаете, что они разного размера и лежат как попало: самый большой лежит сверху, самый маленький – в середине, а средний в самом низу. Предположим, что вы хотите, чтобы ваши блинчики лежали по порядку, чтобы самый маленький лежал сверху, средний – в центре, а большой – снизу. Давайте также представим, что для того, чтобы переложить блинчики, вам нужно следовать такому правилу: вам нужно взять лопатку, вставить в любое место между блинчиками и перевернуть те блинчики, которые находятся поверх лопатки так, чтобы то, что было сверху, оказалось снизу, а то, что снизу, – сверху. Сколько раз вам придется перевернуть блинчики, чтобы они лежали по порядку, используя эту процедуру?
Если у вас всего три блинчика, то вам понадобится перевернуть их два раза. В первый раз вы вставите лопатку под нижний блинчик и перевернете все три блинчика. Теперь самый большой блинчик будет снизу, самый маленький – в центре, а средний – сверху. На этом этапе вам надо вставить лопатку под самый маленький блинчик и перевернуть его и средний блинчик, тогда они поменяются местами. Теперь они лежат идеально!
Но математики обычно хотят узнать правила на общий случай, в нашем примере это будет стопка блинчиков из любого их количества и расположения. Какое максимальное количество переворачиваний потребуется, чтобы изменить порядок стопки из n-количества блинов? (Математики называют это число P
Так сложилось, что это очень трудная проблема. Математики нашли P
Вторник на Масленой неделе – это время для католиков, когда они могут наслаждаться едой из сахара и масла перед Великим постом, традиционным периодом покаяния.
2.17. Математика побеждает в суде
Математические понятия: теория вероятности и статистика, ошибка прокурора
Логическая ошибка – это ошибка в процессе рассуждения, так что даже если вы начинаете с фактов, вы можете прийти к ложному заключению. Иногда логические ошибки связаны с теорией вероятности, традиционной математической темой. А в некоторых случаях логические ошибки, связанные с теорией вероятности, могут помочь признать виновность человека, подозреваемого в преступлении.
Одной такой ошибкой является ошибка прокурора. Когда человек использует эту ошибку в споре – в данном случае «спор» означает не ссору, а ряд аргументированных утверждений, которые нацелены на обоснование положения, – он пытается установить преимущество определенного возникающего факта. Но в процессе установления этих преимуществ он по ошибке сравнивает факт с неуместным набором событий.
Пример поможет ясно показать внутренние механизмы ошибки прокурора. Известный случай такой ошибки произошел в 1998 году на суде Салли Кларк, британки, чьи два ребенка умерли, когда им было всего несколько недель. Защита утверждала, что обе смерти были вызваны СВДС (синдромом внезапной детской смерти), а обвинение настаивало, что Кларк убила двоих детей. Обвинение построило свои аргументы на вероятности двух смертей от СВДС в одной семье. Так как смерть от СВДС является редким явлением, то два случая в одной семье будут еще более маловероятными. Один свидетель-эксперт, сэр Рой Мэдоус, педиатр, заявил, что шанс двух смертей от СВДС в одной семье равен 1:73 миллионам. Но он допустил две ошибки:
1. Первая состояла в мысли, что смерти не будут иметь какой-либо корреляции, будь то генетической или экологической; вместо этого он сделал расчеты, предполагая, что каждая смерть была абсолютна независима от другой. Но эта ошибка не была примером ошибки прокурора.
2. Ошибка возникла, когда сэр Рой рассчитал вероятность СВДС в одной семье против группы примеров, где и вовсе не было смертей от СВДС, то есть против большей части населения, чьи дети никогда не страдали от синдрома. На самом деле, такое сравнение неуместно.
Сравнение, которое должно было быть произведено, выглядит следующим образом. Из примеров, когда два ребенка в одной семье умирали в детстве, сколько смертей произошло из-за СВДС, сколько из-за убийства, сколько из-за комбинации СВДС и убийства и сколько по другим причинам? Дальнейшие расчеты профессора математики из британского университета Солфорд показали, что двойная смерть от СВДС более вероятна, чем двойное убийство в соотношении 4,5:9.