Статистический машинный перевод берет свое начало в теории информации, разделе прикладной математики, который занимается обработкой сигналов, сжатием данных и языками. Предполагается, что он родился благодаря инженеру и математику Клоду Шеннону с публикацией работы «Математическая теория связи» в 1948 году в журнале телефонной компании «Bell System». Теория информации используется в криптографическом анализе, а также в передаче сообщений с помощью мобильных телефонов и компьютеров. Без математики в теории информации телефон в вашем кармане будет не полезнее кирпича. И потрясающая возможность перевода текста с помощью вычислительной обработки данных с помощью сети станет невозможной.
Теория информации также необходима людям, которые работают под землей, чтобы добыть нефть. Их поле деятельности, сейсмическая разведка нефти, зависит от теории информации, чтобы устранить нежелаемый шум, который может стать помехой для сигналов из нефтяных месторождений, и выдать чистый сигнал.
2.22. Не следуй вплотную
Математическое понятие: арифметика
Чем быстрее вы едете на своей машине, тем больше шансов у вас получить травмы. На высокой скорости у вас меньше времени, чтобы среагировать на другие машины на дороге, а тяжесть травм в результате аварии возрастает. Но на сколько именно каждая величина увеличивается или уменьшается? Математика может предоставить несколько полных ответов и, возможно, воодушевит вас ездить осторожнее.
Представим, что вы едете со скоростью 60 миль в час. Если вы знаете, что миля равна 5280 футам, то вы можете посчитать, что двигаетесь со скоростью 88 футов в секунду. А так как длина автомобиля равна примерно 15 футам, то за эту одну секунду вы будете проезжать длину в 6 автомобилей (так как 6 × 15 = 90, а это почти 88). Если по правилам безопасности вы должны следовать за машиной спереди так, чтобы между вами мог поместиться один автомобиль за каждые добавленные 10 миль в час к вашей скорости, то вас будет отделять длина в 6 машин (при условии, что эта машина едет с той же скоростью, что и вы). Эти вычисления показывают, что если у машины, которая едет спереди, вдруг лопает колесо, то у вас есть одна секунда, чтобы среагировать на это.
Поэтому следовать вплотную – это очень плохая идея.
Индекс тяжести по Гэдду определяет, насколько автомобильная авария воздействует на человека, который сидит внутри. Уравнение выглядит так: индекс тяжести =
2.23. Эффект бразильского ореха
Математическое понятие: гранулярная конвекция
Это неизбежно. Когда вы покупаете банку орехов, то каким-то чудом все большие орехи оказываются сверху. То же самое происходит и с хлопьями: большие хлопья, как и орехи, оказываются сверху, так что на дне и в середине мы остаемся без этих вкусных кусочков. Помимо своего обескураживающего действия, так называемый эффект бразильского ореха имеет и другие связи с математикой. Но какие?
Одна популярная гипотеза связывает происхождение эффекта с размерами частиц (которыми могут быть орехи, хлопья, галька, маленькие стеклянные шарики или любые другие смеси объектов). Когда смесь частиц сталкивается, частицы двигаются вертикально, пусть даже на короткое расстояние. В этот момент между частицами образуется пространство и другие частицы по бокам контейнера его заполняют. Но крупные частицы не могут поместиться в пространство, освобожденное мелкими частицами. В результате крупные частицы все время движутся вверх. Как только они достигают вершины, они там остаются, а мелкие частицы двигаются в бок и потом вниз на дно продолжительным циклом, известным как гранулярная конвекция. (Вы видели конвекцию в действии, если видели кастрюлю с кипящей водой. Молекулы воды поднимаются наверх по мере того, как нагреваются, а потом опускаются, когда остужаются.) Математика в коробке хлопьев? Еще бы!
Люди, которые путешествуют по снежным горам, теперь могут носить устройства, которые увеличиваются в размере во время схода лавины, они становятся больше, и, следовательно, возрастает вероятность того, что вы будете двигаться к поверхности, если вас накроет снегом. Эта идея использует тот же принцип эффекта бразильского ореха, который потенциально может спасти жизнь.
2.24. Развеиваем мифы: больше дорог не гарантируют меньше пробок
Математические понятия: сети и системы, парадокс Браеса