Читаем Математика для гуманитариев. Живые лекции полностью

Рис. 45.… и получилась страшная зубастая пасть! Продолжаем ее до бесконечности вправо и влево.


Слушатель: А в конце как?

А.С.: До бесконечности. Мы же говорим о бесконечной плоскости. Полосу сделать у нас получилось… (бесконечную в обе стороны). Ну, а если можно полосу, то мы ее размножаем неограниченно вниз и вверх, и всё. Мы «запаркетили» всю плоскость. А теперь я нарисую выпуклый семиугольник (рис. 46).

Рис. 46. А вот этим нельзя замостить плоскость!


Априори совершенно не понятно, почему им нельзя замостить плоскость? Почему это так? Почему никакого семиугольника нельзя предложить в качестве дощечки для паркета? Если Ваша невеста просит Вас: «Милый, я так хочу выпуклый семиугольный паркет в нашу ванну!», — то это вариант «вежливого посыла» — ибо такого быть не может. Сейчас мы докажем эту теорему. И в этом доказательстве у нас в первый раз возникнет бесконечность «во весь рост». Как доказываются теоремы не существования чего-то? Какой прием доказательства таких теорем?..

Слушатель: От противного?

А.С.: Точно. Предположим, что существует выпуклый семиугольник, которым можно замостить плоскость. Не знаю какой, но какой-то есть. Предположим и приведем это предположение к противоречию. Итак, посмотрим на плоскость, которая замощена этими семиугольниками. Посмотрим на нее в «перевернутый бинокль» и увидим часть плоскости, как будто очень большую квартиру (см. рис. 47).

Я предупреждаю, такими доказательствами гоняют на ночь чертей. Приготовьтесь.

Начнем с того, что попробуем посчитать, сколько в квартире многоугольников. Давайте исходить из того, что наш семиугольник имеет длину 1 метр, а размер квартиры примерно 1 км.

Рис. 47. «Чертогон» в самом разгаре. Для справок можно почитать рассказ Н. С. Лескова с таким же названием.


На самом деле, но важно, какого что размера. Важно, чтобы вторая величина была неизмеримо больше, чем первая.

В данном случае «длина» семиугольника в 1000 раз меньше «длины» квартиры.

Слушатель: Что мы считаем длиной 7-угольника или квартиры?

А.С.: Например, самую большую диагональ. Это не очень важно. Тут математика немножко напоминает физику. Нужно несущественные детали не замечать, а на существенные обращать внимание. Когда у физика есть ниточка, она обычно имеет толщину ноль. На самом деле у нее, конечно, есть толщина, но физикам она не важна. Вот и нам не важно. Возьмем какое-то измерение семиугольника (например, любую из его сторон или любую диагональ). Ведь все эти измерения НАМНОГО МЕНЬШЕ, чем «длина квартиры» — что бы мы ни понимали под этой длиной. На полу квартиры в нормальной ситуации помещается очень много паркетин. Форма пола квартиры тоже неважна, поэтому будем считать его кругом радиуса R (где R может быть как угодно велико).

Не забывайте, что нам приказано замостить не пол в квартире, а всю бесконечную плоскость.

А теперь давайте посмотрим, сколько примерно семиугольников таится внутри вот этого огромного круга? С точностью до порядка? Если у нас диаметр круга в тысячу раз больше, чем диагональ семиугольника, сколько семиугольников примерно поместится в круг?

Слушатель: Миллион?

А.С.: Миллион, правильно. Правильный физический ответ. Миллион. Не важно, что это будет 700000 или 5 миллионов. В районе миллиона. Порядок величины такой. Это примерно миллион.

Слушатель: Почему миллион?

А.С.: Потому что у многоугольника размером 1 метр площадь сопоставима с 1 м2 — может быть, чуть меньше, чуть больше. У круга, у которого диаметр 1 километр, площадь порядка 1000000 м2. Значит, в круг влезает примерно миллион семиугольников.

Зададим теперь следующий вопрос. Сколько примерно семиугольников «живет» в районе границы этого круга (то есть зацепляет за границу круга)?

Слушатель: 6000.

А.С.: Да, похоже. 2πr = 6000. Порядок этого числа — не миллион, а тысяча. То есть внутрь входит в районе миллиона семиугольников, а на границе их несколько тысяч. А теперь — внимание! Я стираю все многоугольники, которые не лежат в этом круге. Затем беру плоскость и, как грузинский хинкали, сжимаю ее в сферу (рис. 48).

Рис. 48. Профессор сжал всю плоскость в сферу, и черти разбежались!


Делаю я это, чтобы воспользоваться формулой Эйлера:

В − Р + Г = 2.

Грубо говоря, вместо круга есть поверхность огромного шара, у которого верхняя шапочка (почти плоская) вся испещрена семиугольниками. Но для картинки на всей большой сфере верна формула Эйлера:

В − Р + Г = 2.

Давайте оценим примерно, сколько у этой картинки будет вершин, ребер и граней? Одна огромная грань снизу, а наверху порядка миллиона граней в виде паркетин. Понятно, что одна грань погоды не делает. Более того, так как мы сейчас будем иметь дело с величинами порядка миллиона, то 2 в формуле Эйлера, или 0 тоже совершенно неважно. Я могу написать «примерно равно нулю». В − Р + Г примерно равно 0. Или В + Г ≈ Р. Граней — порядка миллиона. Г ≈ 1000000.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии