Читаем Математика для гуманитариев. Живые лекции полностью

Колечко на плоскости (рис. 38) не является топологически тривиальным, у него внутри дырка. Получается, что нам запрещено убирать это ребро, потому что мы изменим тривиальный объект на нетривиальный. Математика прошла долгий путь, прежде чем смогла понять, чем формально квадрат отличается от кольца.

Рис. 38. Ребро, охватывающее «дырку от бублика», стерли. Вдоль оставшегося ребра разрезали. Полученную трубку разогнули. Сильно увеличив радиус одного из концов трубки и прижав ее к плоскости, получили из нее кольцо. (Можно стереть вместо этого другое ребро: убедитесь в том, что получится то же самое, даже наглядно проще!)


Но если мы примем к сведению этот путь, то сможем воспользоваться его результатами. Сможем сказать, что можно снимать ребро тогда и только тогда, когда объект, который возникает, будет топологически тривиален, то есть будет похож на квадрат по своей топологической структуре. Именно поэтому я не имею права стирать на торе ребро.

Итак, чему равно В − Р + Г для нашей картинки (рис. 38)? Сколько у нас вершин?

Слушатели: Одна.

А.С.: Граней?

Слушатель: 4?

А.С.: Нет, одна грань. Эта одна и та же грань. Посмотрите, из любой точки грани я могу пройти в любую другую, не пересекая рёбра. А это значит, что грань одна.

На торе сейчас всего одна грань, одна вершинка и два ребра. Поэтому В − Р + Г = 0.

И всегда для тора будет ноль.

А к чему я приду на сфере, когда сниму все возможные ребра и вершины? Какой объект получится? (То есть мы не хотим останавливаться на сети в виде двух граней, охватывающих сферу сверху и снизу, как выше, а хотим сделать ее еще проще.) Я утверждаю, что в итоге останется просто голая сфера с одной вершиной. Все ребра будут сняты.

Слушатель: И как получится два?

А.С.: Вот как. У вас одна вершина, одна грань и ноль ребер. 1− 0 + 1 = 2 (см. рис. 39).

Рис. 39


Почему я не могу снять и точку тоже? Потому что, если я ее сниму, останется сфера, которая топологически не похожа на квадрат. А вот, если я сферу проколол… Что происходит с камерой мяча, который проткнули иголкой? Он сдувается и превращается (если сильно увеличить место прокола и наложить на плоскость) в лоскут — в плоскую фигуру. Сфера отличается от плоского куска только одной точкой. Очень хорошо это понимают грузины, буряты и тувинцы. Они делают большие пельмени (хинкали, позы и буузы).

Рис. 40. Сфера зажата между двумя круглыми гранями (передняя, малая и задняя, большая). Их разделяет n-угольник (в нём, как было сказано выше, n ребер и n вершин). Странно только, что n = 1. Как это понимать, обсуждается в лекции.


Как их делают? Берут кусок теста, поднимают за края, слепляют, и получается сфера. Так что в топологии можно сказать, что сфера отличается от круга всего одной точечкой. Отсюда и возникает одна точка и ноль ребер.

Давайте к одной вершине добавим одно ребро (рис. 40). Что изменилось? Добавилось одно ребро и одна грань. То есть у нас одна вершина, одно ребро и две грани. Странно смотрится замкнутое ребро на рис. 40? Давайте тогда поставим еще одну вершину (рис. 41).

Рис. 41. Случай n = 2 (назовем это «два двуугольника»).


Итак: 2 вершины, 2 ребра, 2 грани: 2 – 2 + 2 = 2.

Не бывает двугранников? Да еще образованных двумя «двуугольниками»? Хорошо. Чтоб не было сомнений, добавим еще две вершинки. Получится квадрат на сфере, то есть n = 4.

4 вершины, 4 ребра, 2 грани: 4 – 4 + 2 = 2. Упорно получается значение «2».

Можно остановиться в любой момент, посчитать количество вершин, ребер и граней. Но вы должны понимать, что всегда можно привести к ситуации, в которой останется одна вершина. Поэтому у любой картинки на сфере эйлерова характеристика равна двум, ибо эту картинку можно свести к простейшему случаю «одна вершина, одна грань, ноль ребер».

Мы получаем противоречие. На торе всегда ноль, а на сфере — два. Но 2 не равно 0. Значит, это разные топологические фигуры, что, впрочем, каждый из вас и так знал. Но вопрос не в том, чтобы доказать очевидный факт, а в том, чтобы наработать язык, который поможет нам этот факт заметить в других пространствах. В частности, в пространстве большего числа измерений. А в большем числе измерений верно в точности то же самое, только появляется то, что называется «трехмерные грани». И получается следующее выражение:

В − Р + Г − Т.

Здесь Т — количество трехмерных граней. Так выглядит эйлерова характеристика для четырехмерного пространства, в котором лежит трёхмерный объект. В общем случае у формулы тот же вид В − Р + Г − Т +… и так далее, в n-мерном пространстве, которое довольно сложно представить. Если изучить, что происходит при стирании вершины, ребра, грани, трехмерной грани, будет обнаруживаться, что значение нашего выражения не изменится. Вот основываясь на примерно таких вещах, но гораздо более сложных, была установлена справедливость гипотезы Пуанкаре.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии