А.С.:
Бесконечность — это гвоздь программы, безусловно. Потому что бесконечность — это центральное понятие в математике. Математика — это шаг через бесконечность. Освоение математики — это когда вы становитесь с бесконечностью «на ты». И чем больше вы «на ты» с бесконечностью, тем лучше вы понимаете математику. Это — наука о бесконечности. В этом смысле математика и религия дополняют друг друга. Религия — это знание о бесконечности, математика — это наука о бесконечности. Это две ипостаси бытия.Сейчас мы поговорим о бесконечности в некотором другом разрезе, геометрическом.
Помните ли вы, что такое квадратный корень? Корень квадратный из 100 — это 10. Потому что 10 х 10 = 100. А вот что такое корень квадратный из двух — это не так понятно. А что такое рациональное число? Если вы не знаете, не страшно. Но что такое целое число, знают все. Целые числа — это ноль, один, два, три, четыре, пять, шесть и так далее в положительную сторону, но также минус один, минус два, минус три, минус четыре и так далее — в отрицательную. У древних была большая проблема с отрицательными числами. Число, бесконечность, уравнение — это всё то, с чем математики всё время имеют дело. Что такое число? Для древних число — это то, чем мы считаем предметы. Более того, до сих пор натуральными числами часто называют числа, используемые для подсчета предметов. Ноль — это для древних уже было что-то странное. Число или не число? Натуральное ли оно? Ноль — это отсутствие предметов. Отсутствие — это количество или нет? Сколько крокодилов в нашей комнате?
Слушатель:
Ноль.А.С.:
Значит, вы считаете, что ноль все-таки натуральное число[15]. А отрицательных чисел у древних греков не было. Вот если бы математика началась в России, то проблем с этим не было бы. Потому что −1, −10 — это мороз, снег идет. Всё понятно — на улице отрицательная температура.Когда я учился в школе, к нам как-то приехали американцы. И они сказали, что уровни умственного развития школьников в России и в Америке различаются как небо и земля[16]
. На что я заметил, что всё очень просто. В Америке редко бывают отрицательные температуры, и поэтому у школьников есть проблема с постижением отрицательных чисел. Американец сильно задумался (тем более, что у нас градусы Цельсия, а у них Фаренгейта!).Действительно, у нас и трехлетние дети знают, что такое −5 и −3. Это когда снег, и мама на голову шапку надевает.
Это вот ваш градусник (рис. 58).
Нулевая температура. А может, 1, 2, 3, −1, −2, −3… градусов. Но между ними тоже что-то есть.
Слушатель:
Да.А.С.:
Я же могу сказать, что сейчас два с половиной градуса выше нуля?Слушатель:
Да.А.С.:
Или три и три четверти градуса.Слушатель:
Да.А.С.:
То есть я могу назвать доли. Их сейчас даже в детсаду рассматривают.Пришло ко мне на день рождения 15 детей. И, допустим, у меня есть 23 яблока. Я взял нож и аккуратно разрезал яблоки на 15 равных частей каждое. Каждому ребенку достанется 23/15 яблока, то есть по 23 дольки.
Это — число между единицей и двойкой:
1 < 23/15 < 2.
Такие числа древние отлично знали. Мы их называем
Ну, скажем, у вас было −5 яблок, и пришло 7 детей. Каждый получил −5/7 яблок.
Слушатель:
Бедные дети…А.С.:
Или вы позвали 30 гостей на день рождения и сказали: «У меня −700 тысяч рублей, в смысле, я должен за квартиру 700 тысяч рублей. Скиньтесь, пожалуйста, поровну». Вот вам и минус: −700/30. Когда вы говорите о таких вещах, как долги, то сразу вылезают отрицательные числа. Я предлагаю вам понять, что все эти числа живут где-то на числовой прямой. Число 5/7 живет где-то между нулем и единицей (рис. 59). Давайте начнем шагать по оси шагами в одну сотую. Мы, на наш взгляд, целиком замостим нашу прямую: 211/100, −135/100 и т. д.И замостить вы можете сколь угодно плотно, можно ведь шагать шагами, равными 1/1000 или 1/000000. Где бы вы ни сидели на числовой оси, где-то рядом с вами, очень близко живет число вида
Математики употребляют в такой ситуации страшный термин