А.С.:
Существующее, но не в этом круге подозреваемых лиц. Это число существует, и оно очень нервировало греков, они не хотели допустить, что оно существует. Однако они отлично знали, что оно нужно для вычислений, но не выражается в виде отношения целых чисел. Они не понимали, что с ним делать. Вроде число не существует, а оно-таки есть. Оно не должно существовать, но оно существует. Числа, которые не представляются в видеЧто такое вообще «иррациональность»? Нелогичность. Неразумность. Иррациональное поведение, например. Но в математике, в отличие от философии, есть совершенно конкретные объекты, иррациональные числа. Это такие числа которые не представляются в виде
Слушатель:
А числаА.С.:
Целые. Непременно целые числа. Иррациональные числа — это числа, которые не являются отношением двух целых чисел. Рациональное число — это отношение двух целых.Есть еще одно труднопроизносимое слово, оно тоже в философском смысле кое-что означает. Слово
Слушатель:
Находится за пределами.А.С.:
За пределами чего бы то ни было.Слушатель:
То есть иррациональное поведение — это поведение странное, но всё же в каких-то рамках. А трансцендентное — это что-то за пределами понимания окружающих.А.С.:
В математикеВнутри множества алгебраических чисел живут как все рациональные, так и корни любой степени и много, много чего еще. Очень много разных чисел. И вот трансцендентные — это те числа, которые не являются алгебраическими. Выдумать неалгебраическое число достаточно трудно. Сначала думали, что все числа алгебраические. А в XIX веке произошел взрыв в математике, было обнаружено огромное количество неалгебраических чисел — но это было только в XIX веке. Примером трансцендентного числа является знаменитое число «пи» — длина окружности с диаметром, равным 1. Доказательство трансцендентности одного-единственного числа «пи» занимает 10 лекций на 4-м курсе мехмата МГУ. Очень мало людей на Земле, которые знают это доказательство. Это — труднейшая теорема. А вот про иррациональность корня из двух всё очень просто.
Я представлю вам два разных доказательства: ОДНО будет длинным, но геометрическим (и оно будет полезно для изучения других тем), второе — короткое стандартное доказательство.
Я проведу некую процедуру; ну, сделал это не я, а не кто иной, как Евклид 2,5 тысячи лет назад. Называется эта процедура алгоритмом Евклида. Разновидность алгоритма Евклида называется цепной дробью. Цепная дробь — это очень просто. Любое число можно разложить в цепную дробь. Ниже я покажу, что числа вида
Приведу пример: дробь 21/13.
Давайте посмотрим, как превращать это число в цепную дробь.
Выделим из этой дроби целую часть. Между какими двумя целыми числами она расположена?
Слушатель:
Между 1 и 2.А.С.:
Правильно. Значит оно равно 1 плюс сколько?Слушатель:
Мне трудно из 21 вычесть 13.А.С.:
Ничего. Я вычту.Слушатель:
8, да?А.С.:
Правильно, да.21/13 = 1 + 8/13
Но это не всё, что я хотел сказать. Потому что я напишу так. Один плюс один разделить на тринадцать восьмых:
Этот фокус с переворачиванием дроби «вверх ногами» и выделением целой части из знаменателя мы будем повторять до тех пор, пока будет возможно. А возможность такая будет нам представляться до тех пор, пока на очередном шагу после выделения целой части дробная часть не окажется равна нулю. Если этого никогда не случится, то исходное число окажется разложенным в бесконечную цепную дробь.
Итак, продолжим разложение числа 21/13 в цепную дробь:
Стоп, машина. После выделения целой части из числа 2 дробная часть равна нулю.
Значит, числу 21/13 «суждено» разлагаться в конечную цепную дробь. Если кто не верит, можете упростить эту «6-этажную» дробь, сделав из нее обыкновенную. Конечно, она будет равна 21/13.Эту операцию придумал Евклид. Называется она — разложение числа в «цепную дробь». Обратите внимание. На последнем шаге мы попали в целое число 2 при переворачивании дроби 1/2. На этом всё заканчивается, так как из целого числа не удастся выудить дробную часть.
Другой пример:
Опять пришли к целому числу. Ура. Закончили.