Попробуем копнуть этот вопрос поглубже.
А может ли быть так, что они почти будут равны, например,
Вдруг мы сможем взять какие-нибудь огромные числа, возвести их в квадрат, умножить одно из них на 2 и выяснить, что результаты отличаются на 1. Может ли такое быть или нет? И если может быть, то насколько часто такое бывает? И можно ли полностью описать все пары целых чисел (
Диофант жил в Александрии в III веке нашей эры. Он оставил после себя 13 томов математических изысканий, 6 из них худо-бедно, но дошли до нас, 7 — полностью и безвозвратно потеряны. 6 томов его изысканий до сих пор питают умы математиков. Диофант писал всё словесно. Примерно так: «Может ли быть такое, что одно число, будучи взятое то же самое число раз (то есть
2
Можно ли такое уравнение решить в целых числах или нет? Мы пишем символами, поэтому далеко продвинулись в математике. Но все идеи буквально, буквально все подряд были в этих шести томах. Если чего-то в них не было, то, видимо, оно было в пропавших. Но мы уже не узнаем этого.
Диофант — человек, оставивший фантастическое наследие. В 1651 году Пьер Ферма читал книгу Диофанта по целочисленной арифметике. Читал и комментировал ее на полях. А сын Ферма издал книгу с комментариями своего отца. На полях был кладезь математических сокровищ. В частности, в одном месте было обнаружено следующее. У Диофанта решалось в целых числах уравнение
Первое решение, возможно, даже имело практическое применение 2,5 тысячи лет назад. Берем веревку, делим ее на 12 равных частей, завязываем узелки в местах деления. После чего связываем веревку в кольцо и делаем из нее треугольник так, чтобы на одной стороне было 5 узелков, на другой 4, а на третьей — 3.
И вот вы получили прямой угол кустарными средствами. Это очень важно.
Землемеру этого хватит. Всё. У него веревка с 12 узлами есть, и отлично. Но математик всегда хочет пойти до конца. Все варианты найти, все целые
Ферма утверждает, что при
не имеет решения в целых числах. То есть, конечно, можно взять
Эта загадка была страшно популярной среди широких масс населения — уж больно просто формулируется эта теорема (да еще какой-то чудак завещал крупную сумму тому, кто справится с доказательством теоремы Ферма). Но и опытные математики были озадачены. Дело в том, что все утверждения, которые Ферма оставил без доказательства, оказались правильными (их все доказали после его смерти), а с этим творилось черт знает что: начали все сходить с ума, потому что всё кажется просто, и хочется взять ручку и начать писать. Вот вы мне не поверите, но когда мне было 10 лет, я этим занимался, честно. Но всё это безумие продолжалось только до 1994 года.
В 1994 году она была полностью доказана нашим с вами современником математиком Эндрю Уайлзом. На самом деле ему предшествовали 30 разных имен, которые долго в разных местах подстраивали большое здание. А он просто понял, в каком месте нужно сшить то, что уже известно. В частности, безусловную важность здесь сыграла московская школа алгебраической геометрии. Последним был Уайлз, но в принципе это — всемирное творение.
Сейчас доказательство великой (или, как еще говорят, последней) теоремы Ферма входит в книгу А. А. Панчишкина, Ю. И. Манина «Введение в современную теорию чисел». Толстенная сложнейшая книга по теории чисел, 7-я глава целиком посвящена теореме Ферма.