В костромской области каждые полгода проводится школа для сильных школьников. Вот они у нас где-то за часик этот корень из 61 раскладывали. Потом еще минут десять сворачивали дробь, и на выходе получали два числа порядка миллиарда. Которые, если подставить в наше уравнение, чудесным образом дают решение уравнения Пелля.
Цепная дробь (или алгоритм Евклида, который ее породил) может быть изложена геометрическим образом. Полезно знать, какая геометрия за этим стоит. Ниже я ее изображу.
Немного уточню теорему Лагранжа, что приблизит нас к термину
Например, 17/15 — корень уравнения 17 − 5
К чему мы приходим? К более широкому подходу. Рациональные числа — это корни вот таких линейных уравнений, то есть уравнений первой степени с целыми коэффициентами.
Корнем какого уравнения является число «корень из двух» (обозначим его просто К)? Нужно написать выражение с иксом, у которого целые коэффициенты, такое, что при подстановке получится 0. Вот оно:
Оно 2-й степени. Вот я и говорю поэтому: К — число не рациональное. Ведь это уравнение нелинейное, оно второй степени.
А если я напишу:
Что я получу на выходе? Корень 10-й степени из 3. Число не рациональное, удовлетворяющее уравнению, где слева стоит многочлен с целыми коэффициентами.
Напишем произвольное уравнение 2-й степени:
Такое уравнение вы, без сомнения, изучали в школе. Но вы изучали его для произвольных
Мы получили выражение, использующее при своем построении операцию извлечения квадратного корня один раз. Так вот, теорема Лагранжа звучит так: если
с целыми коэффициентами, то тогда его цепная дробь будет либо конечной (если вдруг решение окажется рациональным), либо периодической. Верно также обратное утверждение. Если цепная дробь устроена так, что у нее, начиная с некоторого места, возникает периодическое повторение целых частей, то она удовлетворяет такому уравнению с целыми коэффициентами.
А вот теперь, опираясь на эту теорему, я могу вам дать основное определение. Число называется
А
Грубо говоря, если вы возьмете вещественную ось и случайно воткнете в нее булавочку нулевой толщины, вы практически наверняка попадете в неалгебраическое число.
Мы с вами на 3 лекции какую-то задачу решали с какой-то железкой (помните? — которую надо куда-то отправить, чтобы она встала в вертикальное положение). Если вы эту железку наугад взяли где-то, со свалки, установили на шарнир и стали отправлять ровно с той силой, чтобы она за бесконечное время встала в вертикальное положение, то сила, наугад взятая, будет трансцендентная. На самом деле сама железка тоже будет трансцендентной по своей длине. Есть самая большая загадка, которая обычно совершенно не понятна людям, не занимающимся математикой. Как это —
Слушатель:
Целых.А.С.:
«В два раза больше», если вы думаете «в наивном ключе» о бесконечности. Или, так же наивно: «Чисел, которые делятся на 3, в 3 раза меньше, чем всех натуральных чисел». А и тех, и других — бесконечно много.