Читаем Математика для гуманитариев. Живые лекции полностью

Школьник маткласса узнаёт всё это, скажем, в 9-м классе. И вот тут у него, как и у Кантора, возникает мысль: а может, любое бесконечное множество можно пересчитать? Тогда все бесконечные множества одинаковые. Возьмем отрезок [0, 1] и пересчитаем его. Получат ли все точки отрезка номера?

Нет. И это можно формально доказать (Кантор сделал это). Пересчитать точки отрезка невозможно. И так как внутри отрезка заведомо уживается бесконечное число точек вида параметризуемое натуральными числами — например, множество чисел вида 1/n, то мы говорим о том, что отрезок имеет как бесконечное множество большую мощность, он больше как бесконечное множество, чем множество натуральных чисел. На отрезке, на окружности, на плоскости больше точек, строго больше, чем натуральных чисел. Где-то в конце XIX века Г. Кантор понял, что бесконечности бывают разные.

Сейчас я докажу, что множество, любое множество (какое бы оно ни было, конечное или бесконечное), и множество его подмножеств не одинаковы. (Второе множество ОБЯЗАТЕЛЬНО будет больше по мощности.)

Сначала возьмем конечный случай. Пусть у нас есть множество. Оно состоит (например) из трех чисел: 0, 1 и 2. Подмножество это какая-то компания, составленная из них. Какие могут быть компании? Во-первых, может быть компания, в которой нет ни одного числа. Ну, как говорят, пустое множество. «Никого в нём нет» называется компания. Но математики никак не могут без этого обойтись, они просто не могут. Без нуля и без пустого множества математика не живет. Что значит «На день рождения пришло пустое подмножество гостей»? Это означает, что вы накрыли стол, и никто не явился. Математик скажет: «Ко мне на день рождения пришло пустое множество гостей». Потом, возможно, пришел только господин 0. И сразу множество перестало быть пустым!

Продолжаем «придумывать “компании”. Так сказать, кампания по нахождению компаний (шутка). Возможно, в гости пришел не Господин 0, а Господин 1 или Господин 2. Вот вам уже целых четыре компании: одна пустая и три из одного «человека». Эти последние могут даже побеседовать… сами с собой («с умным человеком и поговорить приятно»).

∅ (пустое множество),

{0}, {1}, {2}.

Какие еще варианты?

{0, 1}, {0, 2}, {1, 2}.

Все варианты перечислили?

Еще могли прийти все. Итого — 8 разных компаний.

{0, 1, 2}.

Или такая задача. Вы начальник группы. И вы хотите кого-то наградить. Сколькими способами вы можете решить эту задачу? Вы можете наградить одного, можете не награждать никого. Можете наградить двух, можете всех трех. Сколько у вас способов решить эту задачу? У вас 8 вариантов, потому что 8 подмножеств.

Так вот, ни для какого (ни конечного, ни бесконечного) множества нельзя пересчитать подмножества, используя элементы исходного множества. Подмножеств гораздо больше, чем элементов. У нас элементов всего 3, а подмножеств оказалось 8. Не хватит. Если элементов было бы 5, то подмножеств будет 32 штуки. Для конечных понятно — не пересчитаешь. Я хочу сказать, что такого не может быть ни для каких вообще множеств. Это доказал Г. Кантор.

Смотрите. Как мы могли бы доказывать теорему о том, что множество и множество его подмножеств не одинаковы.

Рассмотрим множество натуральных чисел 1, 2, 3, 4… И множество всех подмножеств этого множества, например, все четные, или все делящиеся на 3, или все кубы чисел, начиная с тысячи, и т. д.

Используем доказательство от противного (но в несколько необычной обстановке). Предположим, что мы смогли пересчитать множество подмножеств. Подмножество четных чисел получило, скажем, номер 15. Подмножество нечетных получило номер 3. Подмножество «Все четные, начиная с десятки» получило номер 156. Числа, делящиеся на 3, как множество, получили номер 1376, отдельно взятое подмножество из чисел, которые между ста и тысячью лежат, получило номер 1000000 и т. д.

Допустим, мы пересчитали все подмножества. Приведем это допущение к противоречию.

Рассмотрим все натуральные числа, для которых «их» подмножество (то есть подмножество с таким номером) не содержит этого числа.

Скажем, четные числа получили номер 15, 15 — нечетное число, то есть, подмножество, ему соответствующее, его не содержит. Значит, 15 — это как раз нужное нам число.

А если, например, подмножество состоит из чисел {101,102, 103…., 200} и получило номер 195, оно нам не подходит, так как 195 лежит внутри своего подмножества. Значит, натуральное число 195 нам не подходит.

Далее Кантор сделал шаг к следующему этапу рассуждения. Он рассмотрел все такие числа, собрал их в кучу и обозвал это подмножеством В.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии