В прошлый раз мы доказывали, что это одно и то же. Подобие имеет место. Что же произойдет дальше? Если мы начнем дальше отрезать квадратики, мы опять получим подобие, и так будет до бесконечности (рис. 75).
Теорема доказана. Из-за подобия мы будем эту операцию бесконечное количество раз проделывать, а значит, ни на какой сетке наш прямоугольник размеров (√2 + 1) х 1 не может лежать и, следовательно, √2 + 1 не будет рациональным числом.
Что-то это мне напоминает… В детстве у меня была книга. Она называется «Вот так история!». Там был мальчик. Он ужасно себя вел. Все были воспитанные, а он был невоспитанный. И вот этого мальчика отправили в невоспитанный город, где у него сразу старик отнял кровать, выгнал его, стал спать в этой кровати. Потом на его подушке выросло невоспитанное дерево, мальчика разбудило. Его все стали обижать, на улице все толкались, и он попросился обратно. Просто детский триллер, да и только. На обложке этой книги, однако, была изображена нетривиальная картина.
Я на нее гляжу, гляжу… Это был момент, когда мой папа понял, что я математик. Я сам тогда ничего не понял, я был совсем маленьким. Я просто посмотрел на картину, на которой сидит дедушка и читает внуку эту книгу. А теперь представьте на секунду, что это означает? Это значит, что на маленькой книжке на картинке изображены дедушка и внук, и у дедушки в руках та же книга, на которой изображены дедушка и внук. Я говорю: «Папа, так это… Это же до бесконечности повторяется! Это же повтор, а значит, это должно быть до бесконечности, да?» В прямоугольниках (рис. 75) то же самое.
С этим связана еще одна интересная задача. Есть две карты города, разного масштаба. Одна карманная, другая большая настенная карта. Предположим, что кто-то взял, сорвал со стены большую карту и кинул на нее маленькую. (Карты подобны по форме) (см. рис. 77).
Доказать, что можно взять иголку и проткнуть эти две карты в одной и той же точке изображаемого ими города.
Это вроде как игра. Я беру вот эти две карты и думаю, как бы мне положить верхнюю на нижнюю, а вы приходите и иглой протыкаете, где захотите; если вы проткнули иглой одну и ту же точку (дом 37 по улице Профсоюзной), значит, вы выиграли, а если нет, то выиграл я. Теорема утверждает, что в этой игре проигрывает тот, кто кладет карту. То есть, как бы ни положить карты, всегда можно указать нужную точку.
Доказательство — в одну строчку. Методом «взгляни — и поймешь».
Нарисуем на маленькой карте ту территорию местности, которую на большой карте закрыла маленькая карта.
Теперь нарисуем на нарисованной карте ту территорию, которую она занимает на маленькой (рис. 78).
Дальше они будут вертеться до бесконечности, но в пересечении всех этих карт будет точка. В нее и надо воткнуть иголку.
А теперь немножко сложнее: я беру две абсолютно одинаковые карты города. Верхнюю снимаю, сжимаю, комкаю, складываю, но не рву. Теперь кидаю на оставшуюся лежать карту так, чтобы верхняя не вылезла за пределы нижней (рис. 79).
Теорема.
Всё равно можно проткнуть иголкой эти две карты в одном место. Всегда, что бы вы ни делали (единственное только нельзя резать и рвать). Если вы карту порвали, то можно добиться того, чтобы проткнуть было негде. А вот если мы не рвали, то всегда найдется общая точка, иногда их будет несколько, но одна найдется обязательно. При условии, что смятая до неузнаваемости (и сплющенная) верхняя карта целиком лежит на нижней. Эта теорема очень эффектна. На самом деле, она утверждает нечто про произвольное непрерывное отображение объекта в себя. Эта теорема не очень простая, я ее рассказываю на курсе «математика для экономистов» и в школе анализа данных Яндекса. Называется онаНа самом деле, пока она не была доказана, в нее не очень верили. Любое непрерывное отображение (разрешено всё, кроме разрывания) замкнутого выпуклого объекта (в теореме Брауэра говорится о замкнутом шаре) в себя всегда обладает неподвижной точкой. То есть точкой, которая никуда ни сдвинулась. Вы что-то растягиваете, что-то сжимаете, что-то складываете, но вы никогда, никогда не добьетесь того, чтобы
Вернемся к задаче, которой мы закончили предыдущую лекцию.
(1 + √2)2
, (1 + √2)3, … (1 + √2)