Читаем Математика для гуманитариев. Живые лекции полностью

В прошлый раз мы доказывали, что это одно и то же. Подобие имеет место. Что же произойдет дальше? Если мы начнем дальше отрезать квадратики, мы опять получим подобие, и так будет до бесконечности (рис. 75).

Рис. 75. «У попа была собака, он ее любил. Она съела кусок мяса, он ее убил — в землю закопал, камень положил. На камне написал: “У попа была собака… ” и так далее до бесконечности».


Теорема доказана. Из-за подобия мы будем эту операцию бесконечное количество раз проделывать, а значит, ни на какой сетке наш прямоугольник размеров (√2 + 1) х 1 не может лежать и, следовательно, √2 + 1 не будет рациональным числом.

Что-то это мне напоминает… В детстве у меня была книга. Она называется «Вот так история!». Там был мальчик. Он ужасно себя вел. Все были воспитанные, а он был невоспитанный. И вот этого мальчика отправили в невоспитанный город, где у него сразу старик отнял кровать, выгнал его, стал спать в этой кровати. Потом на его подушке выросло невоспитанное дерево, мальчика разбудило. Его все стали обижать, на улице все толкались, и он попросился обратно. Просто детский триллер, да и только. На обложке этой книги, однако, была изображена нетривиальная картина.

Рис. 76. На обложке книги сидел дед. Рядом сидели внуки. Дед держал такую же книгу, как исходная, но поменьше. А на ее обложке сидел дед (поменьше), внуки (поменьше), дед держал книгу (еще меньше). А на обложке дед (еще меньше…), и так далее.


Я на нее гляжу, гляжу… Это был момент, когда мой папа понял, что я математик. Я сам тогда ничего не понял, я был совсем маленьким. Я просто посмотрел на картину, на которой сидит дедушка и читает внуку эту книгу. А теперь представьте на секунду, что это означает? Это значит, что на маленькой книжке на картинке изображены дедушка и внук, и у дедушки в руках та же книга, на которой изображены дедушка и внук. Я говорю: «Папа, так это… Это же до бесконечности повторяется! Это же повтор, а значит, это должно быть до бесконечности, да?» В прямоугольниках (рис. 75) то же самое.

С этим связана еще одна интересная задача. Есть две карты города, разного масштаба. Одна карманная, другая большая настенная карта. Предположим, что кто-то взял, сорвал со стены большую карту и кинул на нее маленькую. (Карты подобны по форме) (см. рис. 77).

Доказать, что можно взять иголку и проткнуть эти две карты в одной и той же точке изображаемого ими города.

Это вроде как игра. Я беру вот эти две карты и думаю, как бы мне положить верхнюю на нижнюю, а вы приходите и иглой протыкаете, где захотите; если вы проткнули иглой одну и ту же точку (дом 37 по улице Профсоюзной), значит, вы выиграли, а если нет, то выиграл я. Теорема утверждает, что в этой игре проигрывает тот, кто кладет карту. То есть, как бы ни положить карты, всегда можно указать нужную точку.

Доказательство — в одну строчку. Методом «взгляни — и поймешь».

Рис. 77. Ничто по предвещало появления Ее величества Бесконечности..


Нарисуем на маленькой карте ту территорию местности, которую на большой карте закрыла маленькая карта.

Теперь нарисуем на нарисованной карте ту территорию, которую она занимает на маленькой (рис. 78).

Рис. 18. И завертелись карты города аж до бесконечности!


Дальше они будут вертеться до бесконечности, но в пересечении всех этих карт будет точка. В нее и надо воткнуть иголку.

А теперь немножко сложнее: я беру две абсолютно одинаковые карты города. Верхнюю снимаю, сжимаю, комкаю, складываю, но не рву. Теперь кидаю на оставшуюся лежать карту так, чтобы верхняя не вылезла за пределы нижней (рис. 79).

Рис. 79. Иллюстрация к теореме Брауэра.


Теорема. Всё равно можно проткнуть иголкой эти две карты в одном место. Всегда, что бы вы ни делали (единственное только нельзя резать и рвать). Если вы карту порвали, то можно добиться того, чтобы проткнуть было негде. А вот если мы не рвали, то всегда найдется общая точка, иногда их будет несколько, но одна найдется обязательно. При условии, что смятая до неузнаваемости (и сплющенная) верхняя карта целиком лежит на нижней. Эта теорема очень эффектна. На самом деле, она утверждает нечто про произвольное непрерывное отображение объекта в себя. Эта теорема не очень простая, я ее рассказываю на курсе «математика для экономистов» и в школе анализа данных Яндекса. Называется она Теорема Брауэра.

На самом деле, пока она не была доказана, в нее не очень верили. Любое непрерывное отображение (разрешено всё, кроме разрывания) замкнутого выпуклого объекта (в теореме Брауэра говорится о замкнутом шаре) в себя всегда обладает неподвижной точкой. То есть точкой, которая никуда ни сдвинулась. Вы что-то растягиваете, что-то сжимаете, что-то складываете, но вы никогда, никогда не добьетесь того, чтобы все точки изменили свое положение. Этого нельзя сделать. Этому есть математическое препятствие, и оно называется «теорема Брауэра о неподвижной точке».

* * *

Вернемся к задаче, которой мы закончили предыдущую лекцию.

(1 + √2)2, (1 + √2)3, … (1 + √2)n

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии