Читаем Математика для гуманитариев. Живые лекции полностью

— эти вот выражения почему-то тоже помогали нам решать уравнение Пелля.

Сейчас как раз самое время открыть секрет. Заодно получим еще одно оправдание изучению уравнения Пелля:

x2 − 2у2 = 1.

Греки мыслили геометрическими образами. Старались увидеть число, увидеть теорему Пифагора. У них были «квадратные» и «треугольные» числа.

Например, 4 или 9 — это квадратные числа (рис. 80).

Рис. 80. Из 4 или из 9 кружков можно сложить квадрат.


Что такое треугольное число? Это когда из такого количества кружочков можно треугольник собрать. 3, 6, 10 — числа треугольные (см. рис. 81).

Рис. 81. Перед началом партии в биллиард шары укладывают в «треугольник».


Следующее 15, потом 21. Каждый раз прибавляем на 1 больше, чем в предыдущий раз.

Сам собой возникает вопрос: бывает ли так, что одно и то же число и квадратное, и треугольное? То есть количество фишек таково, что можно собрать из них квадратик, а можно перемешать и собрать треугольник.

Слушатель: Число 1 и такое, и такое.

А.С.: Безусловно. Человек, который говорит «число 1», обладает математическим мышлением. Не пропустить даже простейшего случая. Это очень важно.

Однажды я ехал в поезде из Иркутска в город Тулун. И со мной в плацкарте ехала женщина с дочкой лет пяти. Мама явно не математик, но при этом хочет дочку чему-то научить. И она спрашивает: «Вот, смотри. У тебя пять кукол. Как их можно разложить? 3 и 2». — «Ну, да». — «А еще можно как-нибудь?» Я с интересом наблюдаю. Тут дочка и говорит: «Можно 5 + 0».

Я вскакиваю с полки, спускаюсь и говорю: «Ваша дочь имеет нетривиальные, очень хорошие математические способности».

Мама немножко помолчала, а потом согласилась. Но она не поняла. Ведь назвать 5 + 0 может только человек, у которого четко развита логика, другой человек не назовет, это нетривиальный вариант.

Вернемся к треугольным и квадратным числам. Какое следующее, после 1? Следующее «и такое, и такое» число — это 36 (см. рис. 82).

Рис. 82. Число 36 — «дважды чемпион» среди натуральных чисел.


Давайте найдем общую формулу для всех чисел такого рода.

Слушатель: 36 на 6, ну, 36 на 36 умножить?

А.С.: Давайте, во-первых, выведем формулу для треугольных чисел. То есть, грубо говоря, есть формула для всех квадратных: n2. Подставляете любое число, получается квадрат. А вот как написать общую формулу для чисел 1, 3, 6, 10, 15… Вот что нужно сделать с m, чтобы получить треугольное число?

Что получается? 1 + 2 + 3 + 4 + … + m.

Нужно посчитать такую сумму. Вот оно, треугольное число. Как посчитать такую сумму? Есть знаменитая история про то, как Гаусс быстро в уме подсчитал сумму первых подряд идущих ста чисел. (Но это, мне кажется, байка.) Маленький Гаусс учился в школе в 3-м классе. В школе к учителю или к учительнице пришел знакомый. Учительница решила дать задачу такую, чтобы дети занялись на весь урок. «Дети, а теперь посчитайте 1 + 2 + 3+ и так далее до 100». И ушла довольная. Выбегает маленький Гаусс через 5 минут, говорит: «Я посчитал: 5050».

«А как ты посчитал? А ты можешь доказать?» — «Ну конечно, могу. Смотрите. Я пишу две строки:

1 + 2 + 3 + … + 100,

100 + … + 3 + 2 + 1.

По-другому просто перенумеровал. Сумма внизу та же самая будет. Пусть она равна x. И сверху х и снизу х.

1 + 2 + 3 + … + 100 = x,

100 +… + 3 + 2 + 1 = x».

Давайте теперь сложим строчки по столбикам: 1 + 100, 2 + 99, 3 + 98, …

Слушатель: Всегда получится 101.

А.С.: Конечно. А сколько штук?

Слушатель: 100.

А.С.: 100. Значит, удвоенное значение нашего выражения равно 50 умножить на 100. Откуда после сокращения на 2, естественно, и получается х равно 50 умножить на 101.

2х = 10100,

отсюда

x = 5050.

Вот Гаусс и сказал 5050. И был совершенно прав, ничего не считая. Математика — это искусство лени. Математик — это тот, кто никогда не будет делать рутинных действий, он всегда придумает что-то машинное. Вот вы познали какой-то рутинный метод. Всё. Вы теперь на нём не зацикливаетесь, на нём будет зацикливаться компьютер. Компьютер ничего не выдумает, а математик, он свалит на компьютер всю рутину и найдет закономерность. В Брауншвейге Гауссу стоит памятник: бронзовый 17-угольник, на котором стоит математик. А почему он стоит на 17-угольнике? Потому что Гаусс придумал, как строить правильный 17-угольник циркулем и линейкой. «Правильный» — значит с равными сторонами и углами.

До него эту задачу не могли решить. Можно построить правильный треугольник, 4-угольник. На самом деле, если вы умеете строить многоугольник с простыми сторонами, то остальное легко. То есть надо строить: правильный треугольник, 5-угольник, 7-угольник. А 7-угольник никто строить не умеет. Все мучились и думали: «Что ж такое? Какие-то мы глупые, наверное. Почему мы не можем построить правильный 7-угольник циркулем и линейкой?»

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии