Читаем Математика для гуманитариев. Живые лекции полностью

Это классический бином Ньютона. Чтобы раскрыть все эти скобки, нам нужно каждый раз из каждой скобки взять либо √2, либо 1. Представьте себе, какие из этих операций дадут целое число, а какие будут давать число с корнем из двух. Во-первых, целое получается, если я отовсюду взял единичку. С другой стороны, если я из 2 скобок взял корень из двух, а из 2 единичку, тоже будет целое. Если я из 4 скобок возьму √2 — тоже целое. А вот если из 3 скобок взять или из одной, то получится число с корнем. И после того, как я сложу, у меня получится выражение вида m + n√2.

В m сидят все способы раскрытия скобки, где я беру с корнем четное число скобок, а все остальные разы единичку. А в n — все, в которых я взял с корнем нечетное количество скобок, а из остальных — единичку.

А теперь посмотрим на скобку с минусом. Получится то же самое, за одним исключением. Когда я возьму √2 нечетное число раз, у меня получится число с минусом. Таким образом, при перемножении получается знак минус ровно у тех слагаемых, которые кратны √2. Поэтому после того, как мы всё сложим, у нас получится m − n√2

А теперь давайте перемножим две наши строчки.

(m + n2)(m − n2) = m2 − 2n2.

Напоминает Уравнение Пелля, не правда ли?

Наконец, перемножим правые стороны уравнений. Я не зря вам тут про Гаусса рассказывал. От перестановки множителей ведь ничего не меняется. Поэтому я могу в моем произведении перемножать скобки в любом порядке. Перемножу их по столбцам:

Ну и тогда у нас получается после перемножения по столбцам

в ответе (−1)(−1)(−1)(−1).

А что получится, если (−1) умножается на себя много раз? 1 или (−1). То есть, когда мы будем возводить (1 + √2) в четную степень, будет (+1), а в нечетную (−1).

Но с другой стороны уравнения у нас стояло m2−2n2. Получаем m2 − 2n2 = ±1.

То есть мы доказали, что в любой степени (1 + √2)n порождает решение нашего уравнения Пелля.

Теперь несколько вопросов до следующей лекции.

* * *

1. Вы залезли на вершину Хибинских гор. Высота их примерно 1 км. И посмотрели вдаль. А там — дома. Вам померещилось, или это Мурманск? Могли ли вы увидеть Мурманск? На сколько километров вдаль можно увидеть с километровой горы? Обратите внимание, земля круглая, поэтому сильно далеко не увидишь. На сколько километров видно с Эвереста? С 20-этажного дома? Если кто-нибудь, например, говорит: «Я тут пролетал из Тбилиси в Дели и Москву на горизонте видел». Он врет или возможно такое? Это задача, которая возникает, когда вы идете в горы.

2. Вы стали астрономом. И наблюдали за звездами. Наблюдали, живя в городе Москве, а потом по семейным обстоятельствам перебрались в Санкт-Петербург. Вы обнаружили какие-нибудь новые звезды, которые из Москвы не видно? Как устроены между собой два множества звезд этих двух городов? (Множество звезд, которые видны из Петербурга, и множество звезд, которые видны из Москвы.) Случилось солнечное затмение. Летним днем в Москве стали видны звезды, которые никогда не видны летним днем в Москве. Это новые звезды, например, «Южный крест», или это те звезды, которые вы уже видели над Москвой?

3. Вы идете на лыжах 22 марта. Начинает темнеть, и вы вспоминаете, что 22 декабря, когда вы шли на лыжах, и солнце зашло за горизонт, вы успели добежать до деревни Морозки до полной темноты. Вы идете в том же самом месте. Успеете ли вы добежать до деревни Морозки или нет? Тот же вопрос про 22 июня и 22 сентября (но уже вряд ли на лыжах). Когда быстрее всего наступает темнота после захода солнца, когда медленнее?

4. Вы подошли с вашей маленькой двухлетней дочкой к детской площадке. И обнаружили там некоторое количество качелей разного вида.

Картинка: качели, рассчитанные на двоих детей. Одни с ручкой для рук (см. рис. 83), другие с ручкой для ног (см. рис. 84). А также совсем простые качели в виде обычной доски (см. рис. 85).

Рис. 83. Качели с ручками для рук.

Рис. 84. Качели с ручками для ног.

Рис. 85. Качели без ручек — в виде обычной доски.


Какие качели в порядке (то есть в горизонтальном состоянии), а какие качели вы увидели, скорее всего, в перекошенном состоянии? Как это зависит от расположения спинки?

Вы опять пришли и увидели, что качели устроены как абсолютно плоская доска. Просто обтесанное с двух сторон бревно, и больше ничего. Но одни качели в положении равновесия висят, вторые всё время скатываются набок. Почему?

5. Алиса летит сквозь Землю. Помните сюжет книги Л. Кэррола «Алиса в стране чудес»?

Алиса летит сквозь Землю и думает, что она к антиподам прилетит. В самом центре Земли выбегает гномик и дает ей пинок так, что увеличивает скорость ее полета на 1 метр в секунду. Вопрос: на какое расстояние она вылетит из Земли вверх благодаря этому дополнительному метру в секунду?

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии