Читаем Математика для гуманитариев. Живые лекции полностью

А вот когда оно становилось нечетным, он умножал его на 3 и прибавлял единицу. То есть 3 он превратил бы в число 10. А 10? Сначала в 5, потом в 16. 16 в 8, 4, 2, 1 и в итоге в 4.

12 → 6 → 3 → 10 → 5 → 16 → 8 → 4 → 2 → 1 → 4.

Как видите, мы сейчас пришли к циклу:

4 → 2 → 1 → 4 → 2 → 1 → 4 → 2 → 1…

Давайте возьмем еще какое-нибудь число. Скажем, 13 возьмем.

13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 → 4.

Опять начинается такой же цикл. Возьмем 17.

17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 → 4.

Заметьте, что от 17 уже довольно далеко до повторяющейся части. Сиракузский царь (или кто-то еще) перебрал первую тысячу чисел и обнаружил, что все они приходят к одинаковому концу, их всех ждет цикл «4 → 2 → 1». При этом для некоторых чисел цепочки получаются очень длинные, и числа в процессе преобразований достигают очень больших значений. Число 27 достигает 9232, приходит к циклу за 112 шагов. Вопрос: любое ли число придет к циклу? Ответ был (якобы) неизвестен 2500 лет назад, и до сих пор неизвестен. Конечно же, компьютеры давно запущены, и числа давно проверены до величины порядка 1015. Компьютер продолжает работать. Но все числа перебрать нельзя. И даже если бы компьютер не довел какое-то число до цикла — это не доказывает, что этого сделать нельзя. Возможно, цепочка просто очень длинная. Что в этой проблеме интересно? Вспомним теорему Ферма (для нее тоже получалась всё более длинная цепочка степеней «n», для которых она верна). Но ее доказали для любого «n» без помощи компьютера (в принципе, если бы компьютер предложил три числа x, у, z и степень «n», которые опровергли бы теорему Ферма, он бы решил проблему). А в нашем случае компьютер ничего не может. Разве сам только он найдет какой-то новый цикл!

В 1994 году Уайлз, готовясь к докладу, нашел ошибку в своем доказательстве «великой теоремы Ферма». К счастью, ошибка оказалась несущественной и была им исправлена. А 1 апреля ему пришло электронное письмо, в котором математик, известный Уайлзу, писал, что, пользуясь его методами, он опроверг теорему Ферма. В письме приводились числа и опровержение, содержащее маленькую, незаметную ошибку… У Уайлза был шок (он забыл про 1 апреля). К счастью, эта шутка оказалась не смертельной.

Но теорему Ферма в итоге долгих усилий доказали, а рассматриваемую нами — нет. Уже столько лет требуется человек (апрелеустойчивый), который это докажет.

Следующая по сложности проблема — тоже простая (по формулировке, конечно). Она поставлена сравнительно недавно. И я совершенно уверен, что ее скоро решат.

Давайте рассмотрим прямую линию. Можно ли раскрасить прямую линию в две краски так, чтобы точки на расстоянии единица всегда получались разноцветными? Ясно, что одного цвета недостаточно, а в два цвета раскрасить можно. Например, всю прямую можно разбить на полуотрезки длины 1 с отброшенным правым концом. И эти полуотрезки поочередно закрашивать то красным, то зеленым цветом.

Поэтому для прямой минимальное количество цветов, которое требуется, чтобы любые две точки на расстоянии 1 были разноцветными, равно двум. Соответствующее число для плоскости никому не известно.

Давайте рассмотрим некоторые начальные соображения. На плоскости есть равносторонний треугольник со стороной 1 (рис. 103). Закрашивая всю плоскость, мы, конечно, закрасим и всю площадь этого треугольника, и всю его границу — в частности, закрасим и все вершины этого треугольника.

Рис. 103. Выбираем самый трудный для закрашивания треугольник.


Сколько нам нужно цветов?

Слушатель: Хотя бы 3…

А.С.: Да, двух уже недостаточно. Иначе из трех вершин на расстоянии 1 друг от друга две окажутся одноцветными. Ведь этот треугольник специально взят таким, чтобы длины его сторон были «запрещенными».

Поэтому нужно хотя бы три разных цвета (скажем, К — красный, С — синий, 3 — зеленый). Представьте себе, что с трех сторон к этому треугольнику пририсованы такие же треугольники, затем еще и еще приклеиваем множество таких «особо трудных» треугольников, пока вся плоскость не окажется сплошь покрытой ими. (Математики в этом случае говорят так: рассмотрим на плоскости ТРЕУГОЛЬНЫЙ ПАРКЕТ.) Раскрасив правильным образом этот паркет цветами К, С, 3 (если бы нам это удалось), мы бы полностью решили поставленную задачу для плоскости. Вы, конечно, догадываетесь, что нам не удастся этого сделать (иначе бы эту задачу давно бы уже решили опытные математики). Но мы всё же попробуем это сделать возможно, от этого расширится горизонт наших знаний. Сначала раскрасим правильным образом только вершины 3-угольного паркета. Эти вершины образуют горизонтальные ряды на плоскости; в каждом ряду вершины смещены на 1/2 отношению к предыдущему (и последующему) ряду. Предлагается такой способ раскраски вершин в этих рядах (рис. 104).

Рис. 104


Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии