Читаем Математика для гуманитариев. Живые лекции полностью

Итак, каждый человек в любой момент времени видит звезды только половины небесной сферы. Другая половина не видна, ее загораживает Земля (хотя она вовсе не занимает половины пространства). Фактически, модель ситуации (при наблюдении из космоса) такая. Вы прижимаете к Земле плоскость в любой точке — хотите, в Москве, хотите — в Питере, и наблюдаете ее полный оборот вместе с Землей. В этой плоскости отметим прямую, касательную к меридиану в выбранной точке. В процессе поворота Земли вокруг полярной оси эта прямая опишет поверхность некоторого конуса, которого в каждый момент касается плоскость (оставаясь при этом касательной и к поверхности Земли — потому что Земля оказывается вписанной в этот конус). Вот теперь мы, наконец-то, добрались до изучения двух особых наблюдателей: экваториального и полярного (см. рис. 95). А там, глядишь, и с точкой «Москва», и с точкой «Петербург» станет ситуация понятной. Они же ведь точки по сравнению с Землей, правда?

Рис. 95. Поверхность Земли с указанием экватора и Северного полюса (нижняя часть рисунка). Вертикальные линии — образующие бесконечной в обе стороны цилиндрической поверхности. Для удобства восприятия верхняя часть цилиндрической поверхности срезана горизонтальной плоскостью (верхняя линия — край среза). Отдельная точка — это Северный полюс. Через него проведена горизонтальная плоскость, касающаяся Земли. Эта плоскость схематически изображена в виде параллелограмма.


Рис. 95 показывает, какие звезды увидят наблюдатели, находящиеся на широте 0 градусов (экватор) и на широте 90 градусов (полюс), если они будут в течение 24 часов наблюдать звездное небо (то есть пока Земля совершит полный оборот). Понятно, что в дневное время свет Солнца помешает видеть звезды (а если случится полное солнечное затмение, то всё же увидят). Но есть такие участки звездного неба, которые наблюдатель в принципе не сможет увидеть. Например, наблюдатель на экваторе не увидит (ни в какое время суток) тех звезд на небесной сфере, которые лежат внутри цилиндрической поверхности[24]. (Половина невидимых звезд лежит «выше северного полюса», другая же половина «ниже южного».) Наблюдатель же, находящийся на Северном полюсе, не увидит (ни в какое время суток) звезд «нижней половины небесной сферы». Но зато звезды «верхней половины» он увидит не постепенно в течении 24 часов, а все СРАЗУ. Дело в том, что горизонтальная касательная плоскость на рис. 95 по мере вращения Земли хотя и будет поворачиваться, но она всё время будет совпадать сама с собой. Если мы рассмотрим только наблюдателей из северного полушария, то можно сформулировать такое достаточно простое правило:

«Видно всё, кроме внутренности конуса». Чем ближе к северу находится наблюдатель, тем более «плоский» получается конус, и тем меньше звезд видно. Чем ближе к экватору он находится, тем более «острый» получается конус (а на экваторе его вершина оказывается удаленной до бесконечности; на полюсе же его вершина совпадает с самим полюсом). См. рис. 96.

Рис. 96. Широта Москвы (56 град.) меньше широты Петербурга (60 град.), поэтому коническая поверхность, внутри которой располагаются невидимые звезды, для Москвы имеет более значительную высоту над полюсом, но угол расхождения левого и правого луча из вершины меньше, чем для Петербурга. Поэтому из Москвы видно больше звезд (если наблюдение вести 24 часа). (Рекомендуем мысленно вращать этот рисунок относительно оси симметрии — пунктирная линия образует тогда северное полушарие Земли, а сплошные — «конусы невидимости».)


Поэтому из Санкт-Петербурга видно меньше звезд, чем из Москвы (рис. 97). А на экваторе не видно ни Полярной звезды, ни Южного Креста (да и соседних с ними звезд тоже не видно). Однако последнее утверждение является схоластическим. Чтобы понять это, представьте себе, что цилиндрическая поверхность, изображенная на рис. 95, продолжена вверх до пересечения с небесной сферой. Тогда на этой сфере получится линия пересечения в виде окружности, радиус которой примерно равен 6400 километров (радиусу Земли). А радиус небесной сферы, как указано выше, примерно равен расстоянию до ближайшей звезды (не считая Солнца). Это расстояние неизмеримо больше, чем 6400 км. Так что даже с помощью самого мощного современного телескопа будет проблематичным понять, какие же звезды попали в «область невидимости» для экваториального наблюдателя!

Рис. 97. Семейство прямых, касательных к меридианам.


Задача про 22 мая.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии