Читаем Математика для гуманитариев. Живые лекции полностью

Тем не менее было решено, что на всякий случай за Космосом надо следить с помощью специального воображаемого «телевизора» со сферическим экраном. Это и есть НЕБЕСНАЯ СФЕРА. Где же находится центр этой воображаемой сферы и чему равен ее радиус? Для ответа на этот вопрос надо понять, что же является самым важным для жизни человеческой цивилизации. Конечно же, «земная сфера», то есть поверхность Земли. Поэтому и центр небесной сферы был выбран в центре Земли, с учетом «земного эгоизма» людей. (Наверное, если бы земляне и марсиане жили бы в виде единой цивилизации, центр небесной сферы был бы выбран не в центре Земли, а в центре Солнца.) Что же касается радиуса небесной сферы, то его надо выбрать побольше (чтобы эта сфера находилась далеко от Земли), но не слишком большим (чтобы внутри этой сферы не оказались ближайшие (не считая Солнца) звезды). Конкретное же значение радиуса никого особенно не интересует — лишь бы мы на этой сфере сумели разглядеть все подробности из жизни Космоса. Итак, земная и небесная сфера являются концентрическими. На земной — имеются две важные для землян точки: северный и южный полюс. Через них проходит важная для землян прямая — земная ось. Земля вращается вокруг этой оси с периодом 24 часа[22]. А вот и каверзный вопрос: почему 24? Ответ (неубедительный): потому, что так решили древние астрономы. Но ведь это было пару тысяч лет назад. За это время старушка-Земля могла притормозить свое вращение. А ну как вдруг период ее вращения теперь равен 24,37 часа? Ответ (нелогичный): часов-то по-прежнему 24, но сам час стал немного длиннее. Нелогичность его в том, что нам всё равно надо знать, происходит ли замедление (или, скажем, ускорение) — неважно, как мы это назовем — удлинение периода или удлинение часа. К счастью, сейчас физики могут определять длительность промежутка времени независимо от вращения Земли, причем с высокой точностью. И никаких признаков изменения периода вращения земного шара не обнаружено. Пока не обнаружено. А завтра прилетит какой-нибудь укрупненный метеорит и врежется в Землю…

Следующие два важных термина — зенит и надир. Зенит — это точка, лежащая на небесной сфере прямо над головой наблюдателя, надир — точка, лежащая на противоположной стороне небесной сферы (то есть под ногами наблюдателя, так что он и наблюдать-то ее не сможет). Вы чувствуете, какой подвох есть в этом определении? Земля у нас одна, а наблюдателей на ней может быть очень много — и на суше, и на море. Значит, и точек зенита будет очень много. И даже какие-то два наблюдателя могут сильно поспорить по поводу одной и той же точки на небесной сфере: один скажет, что это «зенит», другой — что это «надир». Надо как-то ограничить «персональный эгоизм» наблюдателя. Поэтому было объявлено, что все эти наблюдатели «воспомогательные», кроме двух «основных». Один из двух наблюдает на северном полюсе, другой — на южном. Кстати, а какой из полюсов назвать северным, а какой — южным? Ведь и здесь, и там очень холодно… Этот вопрос не очень важен, но всё же решено было, что над северным полюсом находится зенит, а над южным — надир. И остался только один «основной» наблюдатель — тот, у которого над головой зенит. Через северный и южный полюс провели прямую и продолжили ее до пересечения с небесной сферой. И далее стали именовать эту прямую не «земная ось», а «ось мира». Вот тебе и раз! Да какое же право имеет маленькая, совсем незаметная в масштабах Космоса планета Земля указывать, как должна быть направлена ОСЬ МИРА? Это — типичнейший пример «земного эгоизма». Погодите, дальше еще и не такое будет!

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии