Читаем Математика для гуманитариев. Живые лекции полностью

Сначала попытаемся понять, какое движение совершала бы Алиса в шахте, просверленной по диаметру земного шара, если бы в центре Земли никакой гномик не толкал бы ее в спину для увеличения скорости. Она полетела бы «вниз» (ощущение у нее было бы такое же, как у человека, упавшего в колодец). До момента достижения центра Земли скорость всё время нарастала бы (в этой задаче считается, что сопротивление воздуха отсутствует); максимальная скорость будет при пролете через центр Земли (в этой точке Алиса будет лететь по инерции, так как сила тяготения обратится в нуль). Затем начнет проявлять себя сила тяжести, направленная против движения. Она будет постепенно нарастать, всё сильнее уменьшая скорость полета Алисы. Ее скорость станет нулевой как раз в тот момент, когда Алиса пролетит всю Землю насквозь. Теперь сила тяжести направлена в противоположную сторону. И затем всё будет повторяться. Такое движение называется «колебательным». Чтобы оно могло возникнуть, тело должно испытывать действие так называемой возвращающей силы. Эта сила всегда направлена в сторону положения равновесия (в этой задаче точкой равновесия является центр Земли). При расчетах именно центр Земли удобно выбрать за начало координат, а ось иксов направить вдоль шахты от начала шахты (место вылета) к ее концу на другом краю Земли. Именно при таких условиях и была написана формула а = −gх.

В этой формуле 0 < х < 1 (доля пути, оставшаяся до положения равновесия). Но обычно в теории колебаний этой буквой обозначают отклонение от положения равновесия (то есть от нуля). В этом случае появление знака «минус» становится понятным: возвращающая сила противоположна направлению отклонения, и она тем больше, чем больше отклонилась точка от центра. Она похожа по своему действию на заботливого пастуха: чем больше овца отклонилась от лужайки с травой, тем сильнее он гонит ее обратно. Скорость изменения какой-нибудь физической величины «х» обозначается в учебниках физики точкой вверху x; а ускорение (то есть «скорость изменения скорости») — двумя точками х. При расчете любого движения точки вдоль прямой (в том числе и колебательного) математики заимствуют из физики второй закон Ньютона: «сила равна массе, умноженной на ускорение». Если «х» означает (как в нашей задаче про Алису) отклонение от начала координат, то уравнение движения материальной точки имеет вид

где m — масса точки, ƒ(x) — закон изменения силы, управляющей движением точки, при изменении ее положения «x». Простейшее колебательное движение («гармоническое колебание») получается при

ƒ(x) = −kx

(линейная возвращающая сила). В этом случае закон движения x(t) (где t — время, прошедшее с момента начала движения) выражается суммой синуса и косинуса с некоторыми коэффициентами (отражающими информацию о начальном отклонении точки от центра и о начальной скорости движения точки). То, что физики называют скоростью, математики называют первой производной. А то, что физики называют ускорением, математики называют второй производной. Математики имеют в своем «арсенале» большой запас математических методов для решения различных уравнений движения. В частности, самое простое колебание описывается с помощью изменения значений косинуса (или синуса).

Если ускорение точки, движущейся вправо, отрицательное, значит, она тормозит, уменьшая свою скорость. Может быть такое, что при неизменном ускорении точка достигнет нулевой скорости и затем, остановившись на мгновение, будет двигаться в отрицательном направлении. Аналогичная ситуация может быть при движении точки влево и воздействии на нее положительного ускорения.

Слушатель: А «x» в каких единицах измеряется?

А.С.: Вопрос о единицах очень важный и правомерный. Можно измерять x в метрах, можно в километрах. В нашем случае х — доля радиуса — безразмерная величина. Решением уравнения, описывающего полет Алисы от падения в шахту и до достижения центра Земли, на самом деле служит обычный косинус.

Однако следует иметь в виду, что бывают задачи и с другими единицами измерения переменной «x».

Например, если «x» означает запас бензина в баке автомобиля (он изменяется с течением времени), то единицей измерения будет литр, а скорость расхода бензина будет тогда измеряться в литр/час. Но математики всё равно называли бы скорость расхода бензина «первой производной».

Вначале координата будет меняться медленно, потом Алиса будет набирать всё большую и большую скорость, ускорение же будет уменьшаться. Алиса сначала долетит до центра, а потом и до поверхности Земли с другой стороны (рис. 93), преодолевая нарастающую силу тяжести («возвращающую силу»), потом опять полетит обратно, и так до бесконечности.

Рис. 93. Вот так Алиса миновала центр Земли и долетела до Америки.


Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии