Читаем Математика для гуманитариев. Живые лекции полностью

Итак, стоит на Северном полюсе наблюдатель, смотрит в небо, и совершает (вместе со всем земным шаром) один оборот за 24 часа. А ему кажется, что и он, и Земля стоят на месте, а весь огромный Космос, со всеми его звездами и кометами (да и с нашим Солнцем тоже), медленно вращается в другую сторону. И чтобы убедиться в этом, достаточно поглядеть довольно долго на экран того «телевизора», через который земляне наблюдают Космос (то есть на небесную сферу). Осталось совсем немного, чтобы силами землян достроить для всего Космоса космическую систему координат (в которой, смеха ради, считается, что Земля абсолютно неподвижна, а всё остальное (в том числе и Солнце) вращается вокруг нее). Рассмотрим плоскость, проведенную через земной экватор. Продолжим ее до пересечения с небесной сферой. Получится «мировая экваториальная плоскость» для всего космического пространства. Вы, наверное, думаете, что именно в ней находится Солнце и вращаются все другие планеты? Ничего подобного! Солнце и планеты находятся в другой плоскости (она называется «эклиптикой»). Обе эти плоскости пересекаются в центре Земли (так что эту точку называют «начало координат мира»). Конечно, у этих двух плоскостей есть и другие точки пересечения (они пересекаются по прямой). Плоскость эклиптики пересекает экваториальную плоскость под углом 23,5 градуса. Земная ось направлена в зенит (zenit), поэтому ее и назовем «ось Z». Осталось указать в экваториальной плоскости, как провести через центр Земли ось X и ось Y. Главное — это задать направление оси иксов. Для этого надо найти на экваторе (естественно, на земном, а не на небесном) нулевой меридиан. На этот счет имеется как минимум два мнения. Англия считает, что надо таковым считать Гринвичский меридиан, а Россия — что Пулковский меридиан. (А какая-нибудь цивилизация из созвездия Тау Кита, считает, что центр мира вообще не должен находиться в центре Земли.) В целях унификации общеземной системы космических координат можно провести ось иксов в направлении, например, Гринвича[23]. Теперь уже можно определить для каждой точки на поверхности Земли (а также и для любой точки Космоса) две координаты: долготу и широту. Нужна еще третья координата — расстояние от центра Земли до интересующей нас точки. Для точки на поверхности Земли (считаемой «идеальным шаром») эта координата равна усредненному радиусу Земли R (примерно 6371 км). Для звезды в Космосе (как бы далеко она ни находилась от небесной сферы) в качестве третьей координаты надо брать радиус небесной сферы, потому что все эти звезды надо спроектировать из бездны Космоса на экран «телевизора» для разглядывания Космоса, то есть на небесную сферу. Так как радиус этой сферы не уточняется, то в Космосе используются только две (угловые) координаты: долгота и широта луча, идущего из центра Земли в данную звезду (или комету, или метеорит…)

Имея систему координат на небесной сфере, можно уже составлять карту всех созвездий. В этой системе Солнце описывает по небесной сфере замкнутый путь, причем оно при этом отнюдь не видно в виде точки (подумайте, почему?). Поэтому необходимо говорить не про «путь Солнца», а про путь центральной точки солнечного диска на небесной сфере. На этот путь у солнечного диска уходит ровно один год (то есть примерно 365,25 суток). Несмотря на неудобство такой системы координат по сравнению с системой Коперника, в ней успешно рассчитали (не пользуясь даже компьютерами!) в каждой точке Земли восходы и заходы Солнца и их длительность. (См. далее основной текст.)

Приведенная выше врезка для чтения необязательна, хотя она дает первоначальный обзор трудностей, связанных с выбором общекосмической системы координат. Те, кто хотят глубже понять то, что сказано во врезке, могут попробовать ответить на вопрос: верно ли, что наблюдатель на Северном полюсе, глядящий вертикально вверх, увидит, что в точке «зенита» находится Полярная звезда? ВАРИАНТЫ ОТВЕТОВ: 1) Он увидит там центр созвездия «Южный крест»; 2) В течение ночи он увидит в этой точке разные звезды; 3) Полярная звезда находится близко к зениту, но не совпадает с ним; 4) Так как радиус небесной сферы не определен, а расстояние до Полярной звезды (в принципе) определено, то этот вопрос бессмысленный.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии