Читаем Математика для гуманитариев. Живые лекции полностью

Так вот, если наш трехмерный мир конечен и односвязен, то мы попадаем в условия теоремы, Пуанкаре Перельмана. И тогда он обязательно является 3-мерной сферической поверхностью 4-мерного пространства-шара.

Обычная сфера радиуса 1 задается уравнением: х2 + у2 + z2 = 1.

А 3-мерная того же радиуса вот так: х2 + у2 + z2 + k2 = 1. (Подумайте, почему координат на единицу больше, чем размерность!)

Раньше это была гипотеза Пуанкаре и относилась она только к топологии. Теперь — это теорема Пуанкаре — Перельмана. И теперь ее можно пытаться применять в космологии.

Часть II

«Знание геометрии артиллеристу и инженеру необходимо, а каждому, кто только чему-нибудь учиться хочет, нужно; сия наука есть истинное основание всем наукам в свете, она научает нас здраво разсуждать, верно заключать и неопровергаемо доказывать; она сохраняет нас от многих заблуждениев, ибо геометристу труднее какое-нибудь предложение доказать обманчивыми доводами, нежели философу.

Эвклидовы элементы суть основании сей несравненной науки — необходимо учащимся предлагать должно, и стараться, чтоб они их знали совершенно…»

Всеподданейший доклад генерал-фельдцейхмейстера графа П. И. Шувалова об учреждении при артиллерии шляхетного кадетского корпуса с классом военной науки (1757 г.)

Лекция 1

Евклид, нам нужно поговорить

А.С.: Сейчас мы рассмотрим несколько сюжетов. Некоторые мы разберем сразу, а некоторые оставим и потом к ним вернем-

Первый сюжет называется фотосъемка.

Давайте представим себе такую ситуацию: на прямой дороге расположено несколько контрольных пунктов (КП). Над этим отрезком дороги непрерывно идет аэрофотосъемка (рис. 109).

Рис. 109. Участок усиленного наблюдения.


И вот однажды сверху засекли шпиона (рис. 110).

Рис. 110. «Возле самой границы овраг. Может, в чаще скрывается враг!»


Требуется понять, где конкретно он находится на дороге. Из визуальных соображений ясно, между какими двумя КП находится шпион, но нам нужна точная координата. Мы видим только фотоснимок. Мы можем запросить некоторое количество информации, например, мы можем запросить координаты некоторых КП. Вопрос: сколько координат нам для этого достаточно запросить. Задача вполне практическая. Фотосъемка достаточно сложное преобразование, относящееся к проективным.

Что это такое? Давайте немного разберемся (см. рис. 111).

При фотографировании происходит перенос каждой точки местности вдоль лучей по направлению к точке съемки. Прямая, конечно, переходит в прямую при таком проецировании. Но вот соотношения отрезков-расстояний становятся другими.

Ясно, что одной координаты для определения местоположения недостаточно. Фокус в том, что двух координат тоже недостаточно.

Рис. 111. Схема аэрофотосъемки. Два четырехугольника — это область, снимаемая на фотопленку (внизу), и границы кадра фотопленки (вверху). Эти две плоскости, как правило, не параллельны друг другу. Из-за этого искажаются соотношения расстояний между точечными объектами. Прямая внизу — охраняемая дорога, на которой расположены три КП (достаточно далеко друг от друга). Черный кружок указывает на место обнаружения подозрительного точечного объекта. Пунктирные линии изображают отраженные лучи света, исходящие от точечных объектов на дороге и фиксируемые на кадре пленки.


А вот три координаты — в самый раз. Потому что у этого преобразования — у проецирования — есть то, что математики называют «инвариант».

Если вкратце сказать, «о чём» математика, то она о том, чтобы выявлять инвариантность ситуации. То есть какие-то соотношения, которые остаются неизменными. Вот вы так измерили (расстояния между КП), так сфотографировали, этак сфотографировали — некоторое соотношение координат точек на всех снимках будет одно и тоже. Я сейчас просто напишу, что остается неизменным. На самом деле это можно строго доказать.

На всех фотографиях, для любых фотоаппаратов неизменным остается так называемое двойное отношение «ДвОт» четырех точек (три из них — координаты КП, четвертая — координата подозреваемого в шпионаже). Оно выражается формулой

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии