Читаем Математика для гуманитариев. Живые лекции полностью

Рис. 112. Рассчитали число «z», и под кустом с такой координатой выловили подозрительного гражданина.


Если не знаешь, ни за что но угадаешь! Это число, которое можно взять и посчитать. Оно будет одинаковым и для местности, и для фотографии. Поэтому я запрошу координаты трех КП, потом вычислю соотношение на фотографии (на которой отражены и положения КП, и расположение неизвестного объекта), приравняю его к выражению с реальными координатами и точно определю реальную координату искомого объекта (а именно, число z).

Врезка 9. Как агент ДвОт ловит шпионов.

Обозначим через х, у, t координаты ближайших КП, в районе которых был замечен шпион.

Но тогда надо ответить на два вопроса: где находится начало отсчета, и какая будет единица измерения длины? Ответ: ЭТО НЕ ИГРАЕТ РОЛИ. В самом деле, двойное отношение координат (ДвОт) не изменится, если от всех четырех координат отнять одно и то же число; оно не изменится также, если все координаты умножить на одно и то же число. Поглядите на формулу ДвОт (формула (5)), и вы сразу поймете, почему это происходит. Итак, давайте запросим координаты точек х, у, t, измеренные в километрах до ближайшей погранзаставы. Допустим, они равны 17, 23, 32 соответственно. А как же мы найдем ДвОт, если «z» нам неизвестно? А вот так:

А теперь внимательно изучим кадр аэрофотосъемки, где были зарегистрированы три КП и один Ш (шпион). Их координаты будем выражать в миллиметрах, а первое КП будем считать началом отсчета (для простоты). Обозначим эти четыре координаты за А, Б, С, Д (где, как мы решили, А = 0). Прочие (ненулевые) координаты мы просто измеряем с помощью миллиметровой линейки, приложенной к фотоснимку. Допустим, мы получили числа (0, 13 мм, 16 мм, 31 мм). Следовательно, мы можем найти ДвОт уже не в виде формулы, а в виде числа:

Приравнивая буквенное выражение ДвОт к его числовому выражению, получаем уравнение первой степени для нахождения «z»:

Отсюда получаем z ≈ 24,4 км.

После чего агент ДвОт сообщает начальнику погранзаставы, что подозрительного человека имеет смысл поискать на расстоянии 24 км и 400 м от заставы. Где он и был найден спящим под кустом, чтобы, дождавшись ночи, начать свою деятельность.

Свойства ДвОт станут понятнее, если рассмотреть следующий пример (рис. 113).

Здесь производится «одномерная» фотосъемка линии ORST из точки К на «линию кадра» OMNL. Конечно, в реальной ситуации будет не линия, а плоскость кадра, и лежать она будет значительно ближе к точке К. Но суть дальнейшего исследования можно изложить и на таком условном рисунке.

Рис. 113. Изображен прямоугольный равнобедренный треугольник КОТ. Длина катета равна 4 единицы. Из прямого угла опущена высота OL на гипотенузу. Из верхней вершины треугольника К проведены две пунктирные линии KR и KS, делящие основание на отрезочки длиной 1, 1 и 2 ед. Основание треугольника лежит на плоскости, которую фотографирует самолет (рис. 111), вершина К — местоположение самолета, а высота OL лежит в плоскости, в которой находится кадр фотопленки (вторая плоскость случайно может оказаться параллельной первой; но гораздо чаще этого не случается). Точки пересечения линий KR и KS с высотой OL обозначены за М и N соответственно. Длины отрезков ОМ, MN, NK равны 6а, 4а, 5а соответственно, где а = (2√2)/15 (для полноты картины!).


Прежде всего отметим, что если бы линия кадра была параллельна фотографируемой линии, то соотношение расстояний между точками O, R, S, Т и точками O, М, N, L было бы одинаковым (и равным 1 : 1 : 2), и никакого «двойного отношения» нам бы не понадобилось.

В случае же, когда параллельности плоскостей нет, произойдет искажение этого соотношения.

Вычислим, насколько сильным оно будет. Уравнения прямых KR, KS легко получить по формуле «уравнение в отрезках»:

x/1 + y/4 = 1 (KR) и x/2 + y/4 = 1 (KS).[27] Уравнение же высоты и того проще — оно имеет вид «у = x».

Поэтому мы легко находим координаты точек M, N: М(4/5, 4/5) и N(4/3, 4/3), а также обычное тройное отношение отрезков ОМ : MN : NL = 6 : 4 : 5 (а не 1 : 1 : 2, как было «на местности»). Можно теперь ввести координаты на прямой OL таким образом, что точка М получит координату 6, точка N координату 10, а точка L координату 15. При этом поменяется масштаб, но он на двойное отношение четырех точек влияния не оказывает.

Теперь мы убедимся, что «ДвОты» для точек О, R, S, Т и для точек О, М, N, L будут СОВПАДАТЬ, несмотря на то, что обычные отношения для них не совпали.

В самом деле, для точек О, R, S, Т

Для точек же О, М, N, L

* * *

Теперь второй сюжет: построения циркулем и линейкой.

(В 11 классе я на экзамене по геометрии получил такое задание, что даже и циркулем пользоваться было нельзя. Третий сюжет, который мы рассмотрим, — это построение одной линейкой. Циркуль отменяется. Есть только линейка. Здесь всё еще веселее. Я расскажу про одну конкретную очень красивую задачу. Но об этом — ниже.)

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии