Читаем Математика для гуманитариев. Живые лекции полностью

Но доказано, что это число построить нельзя. (Если выразить sin 10° через sin 30°, то получится кубическое уравнение, а для построения его решения необходимо уметь строить кубический корень. К сожалению, с помощью циркуля и линейки этого сделать нельзя.) Мы пришли к противоречию, значит, задачу о трисекции угла решить невозможно.

3. Третья великая задача древности — удвоение куба. Вам дан кубик. Нужно построить кубик вдвое большего объема.

Если у исходного куба сторона равна единице, то какая сторона у удвоенного куба? Объем исходного куба равен 1, значит, у удвоенного он равен 2. По формуле V = а3 получаем, что сторона куба должна быть . Поэтому задача, на самом деле, очень просто формулируется. Построить корень кубический из двух.

Сделать это циркулем и линейкой невозможно. По тем же соображениям, почему нельзя произвести трисекцию угла. (Как ни странно, число  циркулем и линейкой построить можно! Угадайте, как?) Лет сто назад еще так мало было известно о числах, что математики не имели ответа на самые очевидные вопросы: например, иррационально ли число ?[28] Приходилось чуть ли не по отдельности перебирать такие числа и разбираться с ними.

Весьма трудным оказалось и число π, потому что до конца XIX века не было понятно, как оно устроено.

4. У четвертой великой проблемы, которая была оставлена древними, особенно интересная судьба. Какие правильные многоугольники строятся циркулем и линейкой? Про нее мы говорили чуть раньше и сейчас еще немного поговорим. Древние умели строить правильные треугольники, четырехугольники, пятиугольники, шестиугольники и их «производные». Например, десятиугольник или двенадцатиугольник. А вот семнадцатиугольник не умели. Его построил в 1796 году 19-летний (обратите внимание!) Карл Фридрих Гаусс. Процедура достаточно сложная. Не буду скрывать. Некоторый секрет состоит в том, что построение нельзя придумать, не зная, что такое комплексные числа. Комплексные числа — это такая волшебная палочка. У шаманов есть бубны, а у математиков — комплексные числа. Это такая числовая структура, которая помогает на ура решать задачи, кажущиеся нерешаемыми. Ну, при чем здесь комплексные числа, когда мы говорим о семнадцатиугольнике? Тем не менее семнадцатиугольник строится только с применением комплексных чисел. Впоследствии (в 1836 г.) Пьер-Лоран Ванцель выявил критерий возможности построения правильного многоугольника. Оказывается, строятся только такие правильные p-угольники (где p — простое число, то есть делится только на единицу и на себя), для которых «р» может быть записано в виде

Например, простое число 17 удовлетворяет этой формуле, если взять k = 2.

В заключение дам вам простую задачу. Докажите, что если есть некоторое простое число р и простое число q, и можно построить р-угольник и q-угольник, то можно построить и pq-угольник.

Наконец, вот третий сюжет, который мы рассмотрим: построение одной линейкой. Циркуль отменяется. Есть только линейка. Здесь всё еще веселее. Казалось бы, с линейкой многого не достигнешь: она может лишь соединять две уже данные точки прямой!

А ведь есть небезынтересные задачки. Например: на плоскости дана неравнобочная трапеция. С помощью одной линейки разделить пополам верхнее и нижнее основание этой трапеции. Здесь, кажется, совсем не за что ухватиться. Ну, проведем две диагонали в этой трапеции. Ну, продолжим боковые стороны трапеции до пересечения. Получили две новых точки. Ну, соединим их тоже. А дальше — что?

Оказывается, больше ничего. Последняя из построенных прямых аккуратно делит оба основания пополам. Да только как это доказать?

Докажем это «методом Декарта». Разместим эту трапецию в достаточно удобной системе координат на плоскости (рис. 120).

Рис. 120. Для решения задачи проведены 5 очевидных прямых, последняя из которых (пунктирная) как раз и разделит оба основания пополам.


Как следует понимать выражение «удобная система»? Ну, например, такая: весь объект целиком лежит в первой четверти, как можно больше вершин лежат на оси иксов, а одна из них является точкой (0, 0). Сам объект задан при этом несколькими параметрами, через которые легко выразить различные части объекта, а также можно отразить некоторые особенности расположения частей объекта.

 В нашем случае удобно нижним основанием считать то, которое длиннее (а равными они быть не могут — подумайте, почему?). Для примера, скос трапеции направим внутрь первой четверти. Боковые стороны не могут быть параллельными (почему?). Задать вершины трапеции (то есть 4 точки) можно четырьмя параметрами (хотя всего координат будет 8). Эти параметры обозначим а, b, с, d. A именно: a — смещение левой верхней вершины вправо; b — смещение правой верхней вершины относительно левой; с — расстояние от правой нижней вершины до начала координат; d — высота трапеции.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии