Читаем Математика для гуманитариев. Живые лекции полностью

Прежде всего, мы выходим из плоскости в пространство. Выбираем там еще одну плоскость. Я проецирую на нее мою картинку (рис. 123) из некоторой точки А. Причем точка А и новая плоскость расположены так, что прямая АО и эта плоскость параллельны. — это точка, в которой пересекаются три произвольно проведенные мною прямые, а также касательная, пока еще мною не построенная.)

Рис. 123. Исходная картинка с гипотетическим построением касательной расположена в «левой» плоскости. Точка пересечения всех прямых на ней обозначена за «О». Точка А еще левее. Прямая АО параллельна правой плоскости, и в ней мы видим ту самую картинку, которая всё и объясняет.


Моя точка О уйдет на бесконечность, так как ей не найдется места на новой плоскости (для того мы и брали прямую АО параллельной новой плоскости), окружность превратится в эллипс, а все прямые, проходившие через точку О — в параллельные прямые. Их точка пересечения ушла на бесконечность, прямые не пересекаются, а значит, в геометрии Евклида они параллельны. (Мне, конечно, не могли дать эту задачу на школьном экзамене в рамках неевклидовой геометрии.)

А теперь смотрите, как все просто. Наша окружность с прямыми перешла в следующую конструкцию (рис. 124). На ней пучок параллельных прямых сечет эллипс. Требуется построить прямую того же пучка, касательную к эллипсу. Очевидно (и подробно обосновано в пояснении к рисунку), что построение, аналогичное сделанному мной, решает данную задачу.

Рис. 124. На новой плоскости картина проясняется. Все пять прямых (здесь я провел обе касательные) теперь пересекаются в бесконечно удаленной точке (то есть, по-школьному, не пересекаются). Окружность превратилась в эллипс (а могла бы превратиться и в параболу; но нам этого не нужно). Точки касания находятся в самой верхней и в самой нижней точке эллипса. «Кресты» на этом рисунке стали симметричными, поэтому ясно, что их центральные точки, а также точки касания лежат на одной прямой. Значит, и прообразы этих точек лежали на одной прямой. Это и есть обоснование того метода решения, который я использовал в этой задаче.


Но свойство касания сохраняется при проектировании: раз прямая с эллипсом имеет одну точку пересечения, значит, на прообразе (то есть, на исходной плоскости) тоже должна быть одна общая точка. Следовательно, это точка касания. Теорема доказана.

Надо только выйти в пространство. Проектируете, превращаете в параллельный поток, и всё очевидно.

Почему же я не придумал в школе такое простое решение? Дело в том, что в 11 классе, в котором изучались проективные преобразования (а это — проективное преобразование), наша учительница литературы Зоя Александровна Блюмина решила набрать гуманитарный класс. Чем отличается гуманитарный класс от математического класса? Конечно же, количеством девушек. Понятно, что вся математика для 11 класса была отменена явочным порядком! Все бегали к гуманитарному классу, поболтать. Я всю проективную геометрию прогулял.

* * *

Давайте немножко разбавим проективную геометрию. В математике есть некоторое количество неожиданно прикольных задач! Они просто падают с неба. Я помню одну задачу, которую мне дали на олимпиаде в 7 классе. Задача про ученика, который сбежал с урока и плавает в круглом бассейне. Учитель его обнаружил в бассейне, подходит к границе бассейна с розгами в руках и говорит: «Я тебе сейчас всыплю. Сейчас ты только выйдешь из бассейна, и я тебе всыплю». А ученик отвечает: «Нет, Вы же не умеете по земле бегать быстрее меня. По земле я от Вас убегу». — «Конечно, ты от меня убежишь, но ты же где-то должен высадиться из воды на землю, правильно? Вот там-то я тебя и схвачу за шиворот и выпорю розгами». — «Ну да, если Вы сможете меня перехватить в момент, когда я буду вылезать из бассейна, то да. Я вылезу в таком месте, где Вас не будет». — «Нет, ничего у тебя не выйдет». — «Нет, выйдет».

Условия задачи следующие: по земле быстрее бегает ученик; а пока он в воде, его скорость V в четыре раза меньше скорости бега учителя W, т. е. V = W/4

Вопрос. Кто победит? Строгое решение, которое я придумал на олимпиаде, состоит в следующем. Нам дано, что скорость ученика в воде в четыре раза меньше скорости учителя на берегу. Давайте нарисуем окружность в четыре раза меньшего радиуса, чем бассейн. Ученик по этой окружности плывет ровно с такой же угловой скоростью, с которой учитель бегает по берегу (рис. 125).

Рис. 125. Учитель пыхтит, ученик плывет не торопясь.


Если я еще чуть-чуть уменьшу окружность, угловая скорость ученика будет больше угловой скорости учителя. Тогда через некоторое время можно добиться того, что учитель и ученик будут на противоположных сторонах (рис. 126).

Рис. 126. Вот так и спасся ученик. А если бы бассейн был квадратный?


Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии