Прежде всего, мы выходим из плоскости в пространство. Выбираем там еще одну плоскость. Я проецирую на нее мою картинку (рис. 123) из некоторой точки
Моя точка
А теперь смотрите, как все просто. Наша окружность с прямыми перешла в следующую конструкцию (рис. 124). На ней пучок параллельных прямых сечет эллипс. Требуется построить прямую того же пучка, касательную к эллипсу. Очевидно (и подробно обосновано в пояснении к рисунку), что построение, аналогичное сделанному мной, решает данную задачу.
Но свойство касания сохраняется при проектировании: раз прямая с эллипсом имеет одну точку пересечения, значит, на прообразе (то есть, на исходной плоскости) тоже должна быть одна общая точка. Следовательно, это точка касания. Теорема доказана.
Надо только выйти в пространство. Проектируете, превращаете в параллельный поток, и всё очевидно.
Почему же я не придумал в школе такое простое решение? Дело в том, что в 11 классе, в котором изучались проективные преобразования (а это — проективное преобразование), наша учительница литературы Зоя Александровна Блюмина решила набрать гуманитарный класс. Чем отличается гуманитарный класс от математического класса? Конечно же, количеством девушек. Понятно, что вся математика для 11 класса была отменена явочным порядком! Все бегали к гуманитарному классу, поболтать. Я всю проективную геометрию прогулял.
Давайте немножко разбавим проективную геометрию. В математике есть некоторое количество неожиданно прикольных задач! Они просто падают с неба. Я помню одну задачу, которую мне дали на олимпиаде в 7 классе. Задача про ученика, который сбежал с урока и плавает в круглом бассейне. Учитель его обнаружил в бассейне, подходит к границе бассейна с розгами в руках и говорит: «Я тебе сейчас всыплю. Сейчас ты только выйдешь из бассейна, и я тебе всыплю». А ученик отвечает: «Нет, Вы же не умеете по земле бегать быстрее меня. По земле я от Вас убегу». — «Конечно, ты от меня убежишь, но ты же где-то должен высадиться из воды на землю, правильно? Вот там-то я тебя и схвачу за шиворот и выпорю розгами». — «Ну да, если Вы сможете меня перехватить в момент, когда я буду вылезать из бассейна, то да. Я вылезу в таком месте, где Вас не будет». — «Нет, ничего у тебя не выйдет». — «Нет, выйдет».
Вопрос. Кто победит? Строгое решение, которое я придумал на олимпиаде, состоит в следующем. Нам дано, что скорость ученика в воде в четыре раза меньше скорости учителя на берегу. Давайте нарисуем окружность в четыре раза меньшего радиуса, чем бассейн. Ученик по этой окружности плывет ровно с такой же угловой скоростью, с которой учитель бегает по берегу (рис. 125).
Если я еще чуть-чуть уменьшу окружность, угловая скорость ученика будет больше угловой скорости учителя. Тогда через некоторое время можно добиться того, что учитель и ученик будут на противоположных сторонах (рис. 126).