Читаем Математика для гуманитариев. Живые лекции полностью

Таким образом, на сфере (в частности, на поверхности Земли) справедлив Признак равенства треугольников по трем углам. Это можно доказать совершенно строго. (Почему же люди, — даже такие, как Евклид, — этого не замечали? Потому, что их жизненный геометрический опыт ограничивался наблюдением малых участков поверхности Земли — и они казались плоскими.) На сфере вообще много чудес. Например, на сфере, радиус которой равен 1, площадь треугольника равна сумме углов (в радианах) минус π. Вот такая вот теорема. Это всё очень красивые результаты сферической геометрии. То есть в «абы-как заданной геометрии» все привычные нам утверждения не обязательно верны. Была разработана целая наука, объединенными усилиями многих ученых было выведено двадцать утверждений, эквивалентных пятому постулату. Но никакого прямого (логического) противоречия в его отрицании не было. В начале XIX века Гауссу написал письмо венгерский математик Янош Бойяи. Он писал, что разработал геометрию без пятого постулата, не видит в ней никаких противоречий и спрашивал, что ему делать. А Гаусс ответил, что знает, что там нет противоречий, но сказать этого вслух нельзя, потому что «мы разворошим осиный улей, и нас искусают осы». Однако великий русский математик Николай Иванович Лобачевский, ректор Казанского университета, в 1829 году написал: «Геометрия, разработанная мною, не только не противоречива, а на самом деле всё именно так и происходит во Вселенной». Когда Гаусс узнал, что Лобачевский не побоялся и опубликовал свои результаты, он сразу предложил выбрать Николая Ивановича в иностранные члены германской академии наук и перестал скрывать свои разработки в этой области. Лобачевский построил геометрию с огромным количеством теорем. В частности, одна из теорем гласила, что сумма углов в ЛЮБОМ треугольнике меньше 180 градусов! Он даже пытался мерить углы между звездами, чтобы доказать, что сумма углов треугольника хоть чуть-чуть, да меньше ста восьмидесяти градусов. В одной из современных космологий всё именно так и устроено (но для проверки этого надо делать замеры не в масштабах Земли, а в гораздо больших масштабах). Итак, у любого треугольника в геометрии Лобачевского сумма углов меньше 180°. И площадь треугольника равна сто восемьдесят градусов минус сумма углов. То есть сферическая геометрия как бы «выпуклая», а геометрия Лобачевского — вогнутая. Современная топология многим обязана Лобачевскому, потому что он открыл этот «ящик Пандоры». Подведем итог «поумнения» человечества в результата исследований 5-го постулата Евклида.

Возможны три типа «геометрий»: 1) геометрия Евклида (сумма углов любого треугольника равна 180°); 2) геометрия того типа, который исследовал Лобачевский (в ней через точку, взятую вне прямой, проходит МНОГО прямых, не пересекающих данную; в любом треугольнике сумма углов меньше 180°); 3) геометрия того типа, который исследовал Риман (через точку, взятую вне прямой, не проходит НИ ОДНОЙ прямой, не пересекающей данную; в любом треугольнике сумма углов больше 180°).

И все эти геометрии логически непротиворечивы!

Лекция 2

Простые числа: таблица Менделеева натурального ряда

А.С.: Сейчас мы вернемся к Евклиду. Он был не только геометром, но также еще доказал замечательный факт из теории чисел. А именно, что простых чисел — бесконечное количество[30].

Давайте сначала поговорим о том, как устроено математическое доказательство, и по каким канонам его можно создавать. Сейчас будет проведено классическое рассуждение от противного. Что такое «от противного»? Давайте представим, что наше утверждение — неверное. Что тогда? Тогда количество простых чисел конечно. Но если их конечное количество, их можно просто перечислить. Какое первое простое число?

Слушатель: Ноль.

А.С.: Нет. Ноль не является простым числом. Ноль вообще исключают при рассуждениях о делимости. На ноль не любят делить. Потому что, если вы делите на ноль что-то отличное от нуля, у вас не получится ничего. А если вы делите ноль на ноль, то у вас получится «сразу всё».

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии