Почему это потрясает и почему это убедительно говорит о нерегулярности появления простых чисел? Потому что закон Валле-Пуссена и Адамара говорит, что между соседними простыми числами (в районе натурального числа
Потом долго пытались придумать
Более того, до ЛЮБОГО простого числа «можно добраться» с помощью какого-то значения именно этого многочлена. Этот многочлен не может в полном смысле слова считаться «формулой для
Но на этом дело не закончилось. В 2013 году открылась охота на
И вот я этим 246-трафаретом еду по натуральному ряду, и бесконечное число раз считываю простые числа, которые попали в него. Более того, при условии доказательства некоторого факта, в который все верят, но еще не доказали, трафарет сократят до 12, а там и до исходной проблемы чисел-близнецов доберутся… 2500 лет люди ничего не знали про минимальное расстояние между простыми, полтора года назад[31]
прорывной результат, снижение этой границы. И теперь гипотеза простых близнецов трещит по всем швам (впрочем, еще держится).Еще немного про простые числа. Давайте рассмотрим ряд, который похож на ряды с бесконечным числом слагаемых, которые мы уже рассматривали:
1/2 + 1/2 + 1/5 + 1/7 + 1/11 + ... .
Я буду суммировать числа, обратные к простым. Как говорят математики, «сходится этот ряд или расходится»? Конечная или бесконечная сумма получится? Удивительный ответ состоит в том, что бесконечная.
Это открыли в начале XIX века.1/2 + 1/2 + 1/5 + 1/7 + 1/11 + ... = +∞
Какое бы число
А если суммировать только обратные к простым близнецам, то сумма будет конечна.
Это значит, что простых близнецов заметно меньше, чем всех простых чисел. Потому что если составить ряд из обратных простых, то он пойдет в бесконечность, а если составить ряд из обратных простых близнецов, то он будет конечным. И никто не знает пока, происходит ли это потому, что он где-то закончится и фактически эта сумма будет конечной, или из-за того, что простых близнецов бесконечное количество, но зазоры между ними быстро растут. Все математики, которые этим занимаются, верят, что простые близнецы никогда не кончатся. Но пока это все-таки остается гипотезой.Расскажу заодно про еще одну нерешенную математическую проблему. Знаете ли вы, что такое совершенные числа? Что означает «мне исполнилось совершенное число лет»?
Слушатель:
Это 18-летие.А.С.:
Нет, это вовсе не 18 лет! 18 — число несовершенное, а вот 6 и 28 — совершенные числа! Поэтому математических совершеннолетий в жизни каждого человека бывает ровно два — это когда человеку исполняется 6 лет, и затем — когда исполняется 28.По определению, совершенное число — это такое число, которое равно сумме всех своих делителей, кроме себя самого. Например, 6 = 1 + 2 + 3, 28 = 1 + 2+4 + 7 + 14. Следующее совершенное число — 496, но до этого возраста никто (кроме библейских персонажей) еще не доживал.
Для четных совершенных чисел есть общая формула:
2
(где
Правда, число такого вида совершенное тогда и только тогда, когда (2
Тем не менее никто не знает, бесконечно количество четных совершенных чисел или нет. Потому что никто не знает, бесконечно ли количество простых чисел вида (2