Читаем Математика для гуманитариев. Живые лекции полностью

Последняя задача называется проблемой Мерсенна, а сами простые числа вида (2k − 1) — простыми числами Мерсенна. Если мы поменяем в этом выражении знак минус на плюс, то получим также весьма интересную и важную, как мы увидим ниже, задачу — а именно, какие из чисел вида (2k + 1) являются простыми? К это задаче мы вернемся ниже, а пока я расскажу кое-что еще про совершенные числа — конкретно, про нечетные совершенные числа.

Ровно 28 лет назад (совершенное число!)[32] я поступил в 57-ю школу. На уроках специальной математики мы решали задачки из так называемых листочков, в которых приводились только определения математических понятий и объектов, а все свойства объектов уже мы сами должны были доказать.

Так вот, в листочке номер 6 (совершенное число!), в задаче под номером 6 (sic!) речь шла о совершенных числах. Было дано их определение, а затем сформулированы три пункта: пункт 6(a) предлагал доказать, что любое четное число вышеуказанного вида является совершенным, если число (2k+1 − 1) простое; пункт 6(б) шел со звездочкой, и в нём требовалось доказать, что других четных совершенных чисел не существует; и наконец, пункт 6(в) шел с тремя (!!) звёздочками, и в нём предлагалось доказать, что нечетных совершенных чисел не существует.

Никогда до этого ни в одном листочке не было задачек с тремя звездочками. Редкие задачки с двумя звездочками вызывали нездоровую конкуренцию математических самцов в нашем классе за то, кто быстрее решит очень сложную задачку и покрасуется перед немногими и потому особенно драгоценными для нас одноклассницами.

Увидев задачку с тремя звездочками, я бросил всё и два выходных подряд пытался ее решать.

Я исписал две общие тетради (кто постарше — помнит, что это такое!!!). В понедельник я шел в школу с опущенной головой, уже представляя себе Рому Безрукавникова, Сашу Сидорова или Сашу Стояновского у доски, взахлеб рассказывающими решение этой задачи.

Интернета в те годы не было. Поэтому неудивительно, что всё принималось за чистую монету. Саша Шень (один из моих учителей в школе 57) стоял у стола, народ потихоньку собирался. Я подошел к нему, швырнул на стол свои тетрадки и сказал: «Сдаюсь».

«Ничего удивительного, — ответил Саша, — это пока что нерешенная математическая проблема. Мы дали на авось — вдруг кто-нибудь из вас изловчится и решит?..»

С тех пор прошло много лет, а воз и ныне там — до сих пор неизвестно, существуют ли нечетные совершенные числа, или их нет совсем. Примера нет, но и доказательства несуществования — тоже нет. Конечно, компьютер перебирает уже лет 50–70 одно за другим и проверяет, но к абсолютному доказательству такая проверка будет иметь отношение только в том случае, если вдруг какое-то нечетное число и впрямь окажется совершенным.

Вернемся теперь к проблеме Мерсенна — точнее, к ее «близнецу». Про числа вида (2k + 1) (которые, кстати, использовал Гаусс при построениях!) известно довольно много.

Фокус состоит в том, что такое число простым может быть только в том случае, если k тоже является степенью двойки! И сейчас я это докажу.

Теорема. Если число (2k + 1) — простое, то k = 2l, то есть исходное число, имеет вид 

Доказательство. Для доказательства нам потребуется один факт из школьной программы:

x3 + 1 = (х + 1)(x2 − x + 1).

Вместо х можно подставить любое число. 23 + 1,З3 + 1,43 + 1 раскладываются на такие множители. На самом деле раскладывается любая нечетная степень плюс один, например, x5 + 1:

x5 + 1 = (x + 1)(x4x3 + x2x + 1).

А четную степень плюс один таким способом разложить не получится.

Предположим, что k не является степенью двойки. Это означает, что у него есть нечетный простой делитель. У каждого числа есть какие-то простые делители. У некоторых чисел есть нечетные простые делители, у некоторых нет. Если у кого нет нечетных простых делителей, значит, это число делится среди простых чисел только на 2. Потому что все остальные простые числа нечетные. Но если число делится среди простых только на 2, то оно, очевидно, есть степень двойки. Если же у него хотя бы один множитель будет нечетный, то я сделаю с ним следующее.

Предположим, что k не является степенью 2, тогда k равно некоторому нечетному числу p умножить на какое-то число t: k = pt. Что же такое теперь 2k + 1?

Я разложил 2k + 1 на множители, очевидно отличные от 1 и даже положительные, значит, простым оно быть не может.

Поэтому число 2k +1 может быть простым только в том случае, если k = 2l — степень двойки.

Пьер Ферма полагал, что все такие числа простые. Это была гипотеза Ферма. Он написал в свей тетрадке «мне кажется, что все эти числа простые». Он не был уверен, ему только казалось. Первое такое число: 22 + 1 = 5 — простое. Следующее: 24 +1 = 17 — простое. Дальше, 28 +1 = 257 — простое, 216 +1 = 65537 — простое.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии