Далее у Ферма стоит запятая, и он продолжает: «Никакую четвертую степень — на сумму двух четвертых степеней, и вообще никакую фиксированную степень — в сумму двух таких же степеней». Далее он пишет восхитительную фразу, за которой математики гонялись 357 лет. Он пишет: «Я нашел тому факту поистине удивительное доказательство, но поля этой книги недостаточно широки, чтобы его вместить». Эта запись рукой Ферма была в экземпляре трудов Диофанта. Этот комментарий был единственным случаем в истории, когда утверждение Ферма не удалось доказать за разумный период времени, спустя 20–30 лет. Один раз Ферма ошибся, но он не утверждал определенно. В случае с простыми «числами Ферма» он написал «по-видимому, они простые». В случае с рассматриваемой нами теоремой Ферма написал, что нашел доказательство. Он упомянул об этом в 1637 г., а в 1994 г. ее доказали. Мы сидели на семинаре по алгебре. Пришел преподаватель и сказал: «У меня для вас потрясающая новость — доказана великая теорема Ферма». Все решили, что это розыгрыш, не может такого быть. Мы учимся на мехмате, и при нас происходит историческое событие. Если быть точнее, теорему доказал Эндрю Уайлз в 1993 г. Но затем в доказательстве им самим была найдена ошибка, которую Уайлз вместе с Ричардом Тейлором исправляли полгода. Поэтому окончательно теорема была доказана в 1994 году. Некоторое время были сомнения, и в 1996–1997 гг. не все были убеждены в том, что это свершилось, так как понять это доказательство могли лишь немногие из математиков. Сегодня можно утверждать, что понимают доказательство этой теоремы человек 500 в мире, детально — около 100 человек. Ежу понятно, что Ферма подобного доказательства выдумать не мог. Следовательно, или Ферма один раз ошибся, или мы до сих пор не знаем простого доказательства этой теоремы. Математики предпочитают соглашаться с первым утверждением, ибо второе позорно для всего человечества.
Ферма не оставил доказательства общего случая, но сохранились записи изящного доказательства для частного случая, для
Я не буду приводить этого доказательства, хотя оно и не очень сложное. Оно использует приемы делимости, что возвращает нас к нашей первой задаче (найти все пифагоровы тройки).
Итак, теорема Ферма:
уравнениеЭто число можно разложить на множители. Есть такая теорема, называется
Например,
Почему процесс разложения на множители не может продолжаться до бесконечности? Каждый раз, когда мы раскладываем на множители, числа становятся всё меньше и меньше. Нельзя бесконечно долго уменьшать натуральное число. Это аксиома Архимеда, но для человека разумного это — очевидное утверждение.
Переименуем простые множители в
Некоторые из множителей могут встречаться несколько раз. А может быть, у
Может ли такое быть, чтобы одно и то же число раскладывалось на простые множители «существенно по-разному» (несущественное отличие — например, 2 · 3 · 5 и 3 · 5 · 2)? Интуиция подсказывает, что нет, и интуиция права. Но доказать это аккуратно довольно сложно. Мы в это просто поверим и не будем проходить этой тернистой дорогой. Что же следует из единственности разложения на простые множители?
Есть два варианта. Либо у
хотя бы одно
но, как известно,
откуда получаем
(
Если бы можно было решить это уравнение, то три натуральных числа
Но Ферма доказал, что такое уравнение не имеет решений в целых числах, строго больших нуля.