Читаем Математика для гуманитариев. Живые лекции полностью

Вот вам пример методов классической алгебраической геометрии. Если я захочу изучать уравнение от трех переменных x, у и z, то получится уже трехмерное пространство. А если у меня 26 переменных? Нам понадобится 26-мерное пространство. Нужно иметь воображение и жить в многомерном пространстве. Представьте, что вы выходите на улицу и переходите дорогу на красный свет. Вас может сбить машина, но стоит вам перейти в четырехмерное пространство, и вам станут безразличны все светофоры, так как машины будут проезжать сквозь вас, и даже не будут замечать этого. А ведь вы сделали только один шаг по четвертой оси координат!

Немного сложнее доказать, что не раскладывается на множители х2 − ху + у2. Допустим, что

x2 − ху + у2 = (αх + βу)(γх + δу).

Посмотрим на множество x2ху + у2 = 0.

Умножим всё на 4, затем преобразуем:

4x2 − 4 + 4у2 = 0,

4x2 − 4 + у2 + 3у2 = 0.

Свернем 4x2 − 4 + у2 = (2x − у)2 по формуле Бинома Ньютона.

Получим (2x − у)2 + 3у2 = 0.

Если сумма квадратов равна 0, значит, каждый из них равен 0. Значит, во-первых, 3у2 = 0, то есть у = 0. А во-вторых, (2x у2) = 0, то есть 2x − у = 0, откуда в силу у > 0 имеем x > 0. То есть это уравнение задает точку (0; 0). Но (αх + βy)(γx + δу) по-прежнему задает две прямые (в крайнем случае, одну). Множества опять не совпадают. Значит, разложить x2 + у2 на множители нельзя.

Зачем мы это делаем? Я снова сделаю переход от истории к математике.

Вернемся к x2 + у2 = z2. Рассмотрим несколько способов решения этой задачи.

Первый способ решения называют «формулой индусов», т. к. полагают, что еще древние индусы знали это решение.

Давайте посмотрим, какие бывают варианты для четности или нечетности x, у и z? Если число четное, оно имеет вид 2k, тогда его квадрат имеет вид (2k)2 = 4k2 и он делится нацело на 4. (В некоторых книгах факт делимости изображается так: )

Если число нечетное, то его можно представить в виде выражения 2k + 1 для некоторого целого k, и тогда

(2k + 1)2 = 4k2 + 4k + 1 = 4(k2 + k) + 1.

4(k2 + k) + 1 — не просто нечетное число. Это число, которое при делении на 4 имеет остаток 1.

Какие бывают остатки при делении на 4? 1 и 3 у нечетных чисел и 0 и 2 у четных. Так вот, выведенные формулы показывают, что у квадратов всегда остатки либо 0, либо 1. Например,

02 = 0, 12 = 1, 22 = 4,

то есть ноль при делении на 4, далее — 9, 16, 25, 36, 49 (с чередованием остатков 1 и 0 при делении на 4).

Тут есть еще один более глубокий «фокус-покус»:

где  всегда целое число. В числителе стоят два подряд идущих числа. Одно из них всегда четное, значит, это выражение делится на 2.

Получается замечательная вещь. Квадрат любого нечетного числа дает остаток 1 при делении на 8. Это — очень важный факт. Но в нашем случае важен остаток при делении на 4.

Вернемся к нашему уравнению

х2 + у2 = z2 (7)

(так как это — формулировка теоремы Пифагора, то такие прямоугольные треугольники со сторонами х, у, z, где х, у, z — целые числа, называются «пифагоровыми»).

Прежде всего сократим все на 2.

Делим на 2 все три числа, пока они синхронно будут делиться. Затем, заодно, разделим все три числа на все их прочие общие простые множители. Так мы опишем не все треугольники, а только качественно разные. Поясним сказанное, воспользовавшись понятием подобия треугольников.

Если два треугольника подобны, то тройки их сторон пропорциональны друг другу. Интересно в каждом семействе подобных друг другу пифагоровых треугольников найти самый маленький треугольник с целыми сторонами. Потом мы сможем умножить найденное решение (x, y, z) на любое целое положительное число. Треугольник увеличится, но останется пифагоровым.

У этого самого маленького треугольника не будет делимости ни на одно простое число у всех трех сторон одновременно. Но и длины двух сторон не могут делиться, например, на 2, иначе длина третьей стороны тоже будет обязана делиться на 2, так как выполняется равенство (7). Если делятся слагаемые, то делится и сумма, значит, можно сократить все три числа.

То есть у минимальных троечек из этих трех чисел на 2 может делиться только одно. Аналогично и на любое другое простое число может делиться длина не более одной из трех сторон.

Оказывается, что не подходит тот вариант, когда х, у, z — все нечетные числа. В самом деле, предположим, что все числа нечетные. х2 — нечетное, у2 — нечетное. Следовательно, z — четное (так как сумма нечетных чисел всегда четна). Значит, все-таки одно (и только одно) из х, у, z должно делиться на 2.

А могут х и у быть нечетными? Нет, потому что у квадратов при делении на 4 будет остаток 1, а их сумма даст остаток 2, но z — четное, поэтому его квадрат при делении на 4 должен дать в остатке 0. Значит, в любой пифагоровой тройке после ее максимального сокращения число z будет нечетным. Для примера возьмем тройку (30, 40, 50). Она сводится к тройке (3, 4, 5), где 5 — нечетное число.

 Значит, одно число из x и y должно быть четным, другое — нечетным. Можно считать, что x — четное.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии