Однако уже следующее число такого вида оказалось составным. Ферма ошибся. Но, вообще, Ферма обычно не ошибался. Есть такой принцип, «Ферма ни разу не обманул»[33]
. Все утверждения, которые он сделал с пометкой «это удалось строго доказать», впоследствии были доказаны. Он не оставлял доказательств, предлагая поверить ему на слово. Однако, в этом конкретном случае он написал: «мне кажется». И таки нет: 232 + 1 раскладывается на множители. Единственным исключением из «правила Ферма» была великая теорема Ферма, ее никак ни могли доказать. Но потом она тоже перестала быть исключением. Ее тоже доказали. Проблема только в том, что то доказательство, которое сейчас существует, ни при каких условиях не мог выдумать сам Ферма. Оно содержит настолько сложную математику, которую Ферма не мог знать. Но ведь могло быть, что Уайлз (доказавший Великую Теорему Ферма в 1993–1994 годах) «ехал из Москвы в Питер через Киев», а Ферма ехал напрямую. Никто этого не знает наверняка!Давайте вернемся к числам n =
3, 5, 17, 257, 65537,... . Их назвали простыми числами Ферма. Они замечательны тем, что такие правильные n-угольники строятся циркулем и линейкой. Первый нетривиальный из них, 17-угольник, построил ещё Гаусс. А затем Ванцель доказал следующую общую теорему: правильный n-угольник может быть построен с помощью циркуля и линейки в том и только том случае, если в разложение числа n на простые множители (единственное, в силу Основной Теоремы Арифметики!) входят только степени двойки, а также простые числа Ферма: n = 2kp1p2...pr, где все простые числа pl имеют вид Этой теоремой Ванцель вплотную подобрался к современному разделу математики, который называется «теория полей». Математики очень любят такие интересные объекты: поля, группы и кольца. Каждое из этих слов носит строгий математический смысл, совершенно не тот, который они носят в разговорном русском языке. Еще есть термин «идеал», и даже такое понятие, как «кольцо главных идеалов».
А сейчас будет рассмотрена одна старинная проблема. Она описана Диофантом в одном из шести сохранившихся томов его произведений: найти все прямоугольные треугольники с целыми сторонами.
Итак, есть прямоугольный треугольник (см. рис. 131). Согласно теореме Пифагора, доказанной геометрическим путем в первой части книги, отношения между сторонами а, b, с
такого треугольника задаются формулойa
2 + b2 = c2.Таким образом, нам нужно найти все целочисленные тройки а, b, с,
удовлетворяющие данному квадратному уравнению. При решении этой задачи мы будем пользоваться одной школьной формулой сокращенного умножения, а именно формулойa
2 − b2 = (a − b)(a + b).Давайте докажем эту формулу геометрически (аналогично тому, как в первой части книги мы доказали геометрическим путем саму теорему Пифагора).
Рис. 131
Прежде чем приступить к решению этой задачи, давайте немного отвлечемся и вспомним формулу сокращенного умножения
а
2 − b2 = (а − b)(а + b).Давайте докажем тождество а
2 + b2 = с2 геометрически.Нарисую квадрат со стороной а.
И вырежу из него квадратик со стороной b.а
2 − b2 = (а − b) (а + b)Рис. 132.
Формула сокращенного умножения «в картинках».
Я хочу узнать, чему равна остающаяся площадь? Для этого я отрезаю прямоугольник и приставляю его снизу. Получаю прямоугольник со сторонами а − b
и а + b и площадью (a − b)(а + b).Итак, с одной стороны оставшаяся площадь равна а
2 − b2. С другой стороны (а − b)(а + b). Значит, a2− b2 = (а − b)(а + b). Тождество доказано.А что такое прямой угол?
Слушатель:
90 градусов.А.С.:
А если кто-то прилетел с Марса, как ему объяснить, что значит «прямой угол»?Есть безупречное определение прямого угла. Это такой угол, который, если вырезать его из бумаги и приставить к самому себе, даст развернутый угол (рис. 133).
Рис. 133.
Слева — исходный угол, справа — приставлена к нему копия этого угла, вырезанного из бумаги. А внизу получилась сплошная прямая линия. Как говорится, ясно даже марсианину…
Развернутый угол — это прямая. Прямой угол — это половина развернутого угла. Это выводит нас на очень интересный вопрос: что имел в виду Евклид, когда писал, что все прямые углы равны между собой? Что такое «равны»? Есть одно очень важное понятие — движение.
Движение — преобразование, которое сохраняет расстояние между парами точек. Мы всегда можем померить расстояние между точками на плоскости. Потом мы можем плоскость поворачивать, отражать, двигать — главное, чтобы расстояние между точками не менялось. Так вот «равны» — это всегда означает «совмещаются движением».