Многие люди читают примеры вроде 37 – 19 как «от тридцати семи отнять девятнадцать»: их первые впечатления о работе с вычитанием связаны с тем, что что-то убирают или отнимают. Отсчитываем 37 счетных палочек, а теперь 19 убираем, сколько остается? Но ведь при помощи вычитания можно решать множество самых разных задач, в том числе тех, где ничего не «отнимается».
У меня 37 наклеек, а у моего друга 19. На сколько наклеек у меня больше?
Эту задачу можно решить вычитанием: 37 – 19, но ничего здесь ни у кого не отнимается – в конце концов я останусь при своих 37 наклейках, а у моего приятеля их по-прежнему будет 19.
Аналогично, предположим, что новая игра для игровой приставки, о которой я мечтаю, стоит £37. Пока в моей копилке набралось £19. Сколько еще мне нужно накопить?
Дети склонны решать такие задачи при помощи счета вверх от 19 до 37, что можно записать как 19 +? = 37, но вы можете перевернуть пример и спросить: «Чему равно 37 – 19?»
В этом случае неразмеченная числовая прямая также представляет собой мощный образ и помогает ребенку освоить методы вычитания в уме, а также исследовать различные его смыслы. Мы предлагаем вам подумать чуть-чуть над следующими тремя примерами: прежде чем читать дальше, попробуйте найти ответы и осмыслить, как вы это сделали:
130 – 17; 130 – 118; 130 – 49.
Первый пример большинство людей решает путем «отъема»: они удаляют 17 из 130, как правило сначала отнимая 10 и получая 120, а затем отнимая 7 и получая 113. Но «отнимать» 118 из 130 – довольно громоздкая процедура. Проделать это можно, но вы, скорее всего, сказали себе: «Так, 12 и 118 будет 130». Иными словами, вы, вместо того чтобы «отнимать», добавляли к 118 и по существу искали разницу между двумя числами. 130 – 49 иногда подталкивает к другой «компенсационной» стратегии: 49 близко к 50, поэтому вычтем 50 из 130, получим 80 и добавим единицу обратно (в порядке компенсации за ту лишнюю единицу, которую мы вычли, когда вычитали 50 вместо 49). Все эти методы можно наглядно представить на неразмеченной числовой прямой.
Многие учителя сегодня рекомендуют детям сопровождать счет такими вот короткими то ли рисунками, то ли записями, потому, что, по данным психологов, дети постепенно начинают работать с каким-то воображаемым вариантом числовой прямой и в дальнейшем могут складывать и вычитать уже без всяких записей.
Работая с детьми, старайтесь использовать самые разные слова при чтении задач на вычитание. Так, когда есть пример 10 – 7, вы можете сказать: «От десяти отнять семь», «Десять минус семь», «Из десяти вычесть семь», «Какова разность между десятью и семью», «На сколько десять больше семи?», «Насколько семь меньше десяти?»
Использовать вычитание приходится постоянно. Вот, скажем, задача из реальной жизни. Не исключено, что, решая ее, вы примените разные методы, в том числе вычитание и сложение.
Рэчел покупает пару сандалий за £13,75 и пару кроссовок за £32,40.
1. Сколько сдачи она получит с £50?
2. На сколько кроссовки дороже сандалий?
Нарисуйте на листе бумаги очень большой квадрат. Попросите ребенка выбрать какие-нибудь интересные числа и поставить их в четырех углах квадрата. Отметьте середину каждой стороны квадрата; вместе с ребенком определите разницу между числами в соседних углах и запишите полученное число возле отметки в середине соответствующей стороны. (В нашем случае разница между числами в верхних углах составляет 8, а числа левой стороны различаются на 11. Остальное можете заполнить сами…)