Читаем Математика для взрослых. Лайфхаки для повседневных вычислений полностью

Люди часто заблуждаются, оценивая свои шансы на удачу, а вокруг, увы, полно бессовестных типов, которые этим пользуются, вовлекая доверчивых искателей легкого счастья во всевозможные аферы, а затем облапошивая их. Если вы один из таких прощелыг, вот пара несложных трюков вам на радость. Суть их в том, чтобы сначала убедить жертву, что удача на ее стороне, а затем обчистить до нитки.

Черные и белые карточки

И вот вы сидите за столом с бедным стариной Малькольмом и показываете ему три карточки: одна черная с обеих сторон, другая – белая, а третья с одной стороны черная, а с другой – белая.

Попросите Малькольма перетасовать не глядя карточки под столом, затем вытащить одну карточку и положить ее на стол так, чтобы никто из вас не заметил цвета нижней стороны. Остальные две карточки никто не должен видеть. Пусть верхняя сторона лежащей на столе карточки будет черная.

– Очевидно, это не белая с двух сторон карточка, – говорите вы, – значит, она или черная с белым, или черная с обеих сторон.

Малькольм глубокомысленно кивает в ответ.

– Выходит, что с равными шансами это та или другая карточка. (Малькольм снова кивает.) Спорим на один фунт, что другая сторона черная!

– Нет, спасибо, – отвечает Малькольм. Он что-то подозревает, хотя и не понимает, в чем подвох.

– Ой, да ладно, – подначиваете вы. – Знаешь, давай так: если другая сторона черная, ты платишь мне один фунт, а если белая, я плачу тебе полтора фунта. Годится?

Малькольму это предложение кажется слишком заманчивым, он кладет деньги на стол… и с вероятностью 2 шанса из 3 вы выигрываете. Иными словами, в среднем за три кона игры вы заплатите Малькольму полтора фунта, а он вам два.

А секрет вот в чем: какого бы цвета ни была верхняя сторона карточки, всегда ставьте на то, что другая сторона того же цвета. У двух карточек цвета сторон совпадают, и лишь у одной – разные. Поэтому у Малькольма всего один шанс на выигрыш из трех.

Если Малькольм всерьез задумается, он может догадаться, в чем дело, так что пора переходить ко второму трюку.

Трюк с двумя монетами

Этот трюк очень прост, но при этом весьма необычен! Идеально будет провернуть его с Малькольмом, когда он придет вместе со своей подругой Сандрой. Сандра поможет вам облегчить карманы Малькольма; нужно лишь, чтобы она выполняла ваши просьбы и не подсказывала Малькольму.






И что же получается, сделка выгодна для Малькольма? Конечно, нет. На самом деле вы снова должны выиграть с вероятностью 2 из 3. Хитрость в том, что при бросании монет кажется, будто есть три варианта того, как они могут лечь: два орла, две решки или орел и решка. Однако, взяв монеты разных размеров, вы увидите, что вариантов четыре:



Вы просили Сандру заново бросить монеты, если выпадут две решки, так что этот вариант исключен. Значит, когда дело дойдет до ставок, останется только три варианта. Когда Сандра покажет орла, в двух вариантах вторая монета лежит решкой. Поэтому в двух случаях из трех вы должны выиграть.

Прибыль букмекера

Предположим, перед вами стоит мешок с 12 шариками: один черный, 8 белых и 3 серых. Ваша задача – с закрытыми глазами вынуть один шарик из мешка. Если он черный, вы выиграли, но каковы шансы на победу? Очевидно, 1 из 12, что можно записать как 1/12.

Или же можно сказать, что есть 11 вариантов не вынуть черный шарик против одного варианта выигрыша. Получается коэффициент против выигрыша 11 к 1, который букмекеры обычно записывают как 11/1. Так они и рассчитывают ставки.

Букмекер, который не планирует получить прибыль, предложит вам коэффициент 11/1 против того, что вам попадется черный шарик. Если вы поставите 1 фунт и проиграете, фунт останется у букмекера. Если вы поставите 1 фунт и выиграете, он вернет ваш 1 фунт плюс еще 11 фунтов выигрыша.



Предположим, вы вынимаете шарики из мешка по одному. Вам известно, что 11 раз вы проиграете, а 1 раз выиграете. Если букмекер каждый раз будет предлагать вам коэффициент 11/1 после того, как вы достанете последний шарик, вы заплатите ему 11 × 1 фунт = 11 фунтов. Он же заплатит вам 1 × 11 фунтов = 11 фунтов, так что это честный, или чистый, коэффициент.

Вы решаете, что шансы вытащить черный шарик слишком малы, и потому хотите попытаться достать один из 8 белых шариков. Тогда вероятность вашего выигрыша составит 8/12. Букмекер говорит, что шансы против вашего выигрыша 4 к 8, то есть чистый коэффициент равен 4/8, или, после сокращения, 1/2. Если вы поставите 1 фунт и вытащите белый шарик, вы выиграете 1/2 × 1 фунт = 50 пенсов.

Как переводить букмекерские коэффициенты в вероятности

Наш букмекер также предлагает коэффициент 3 к 1 против того, что вы достанете один из серых шариков. Чтобы убедиться, что это чистый коэффициент, нужно преобразовать его в вероятность выбора серого шарика и посмотреть, верна ли она.



Из букмекерского коэффициента следует вероятность 1/4. Поскольку в мешке 3 серых шарика из 12, это дает вероятность 3/12, то есть 1/4. Выходит, это чистый (честный) коэффициент!

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука