Лестница, стена и поверхность земли образуют прямоугольный треугольник. Если вы измерили угол между лестницей и землей (он равен 72°), то можете вычислить, на какой высоте находится желоб, чтобы не теряться, отвечая потом на вопросы работников скорой помощи.
Лестница является гипотенузой треугольника, и она равна 8. Высота, которую мы хотим узнать, – это сторона, противолежащая углу в 72°, так что можем составить простое уравнение:
Умножив обе части уравнения на 8, получим
Чтобы вычислить синус на калькуляторе, введите ‹sin 72 =
Затем умножим это число на 8 – выйдет 7,608. Это и есть высота от земли до желоба в метрах!
Косинус (cos) и тангенс (tg) – это дроби, представляющие отношения других сторон треугольника друг к другу.
И это практически все, что вам нужно знать о тригонометрии…
Логарифм: это что за чертовщина?
Всякий раз, когда разговор заходит о самых мрачных и зловещих тайнах математики, как правило, вспоминают о логарифмах. На многих это слово навевает кошмары, полные бессмысленных чисел и язвительных учителей. Однако теперь, когда школа позади, не пора ли все же разобраться, что это такое? Не будет ни тестов, ни контрольных, ни летающих губок для вытирания доски – чудовище не сможет вам навредить.
Логарифмы в 1645 году изобрел шотландец Джон Непер, и на протяжении 350 лет (пока не изобрели калькуляторы) они были единственным верным средством для быстрого умножения и деления очень больших чисел. Так в чем же суть логарифмов?
Возьмем весьма простое выражение:
Иначе его можно записать как 103 × 102 = 105 – это абсолютно то же самое, однако вместо того, чтобы перемножать большие числа, мы просто сложили степени: 3 + 2 = 5. Джон Непер понял, что
Но вот незадача: такие степени редко бывают красивыми ровными числами, например 78 = 101,89209. Когда степени становятся затейливыми десятичными дробями, их называют
Перевод чисел в логарифмы – крайне утомительный процесс, но соратник Непера по имени Генри Бригс облечил его, разработав для подобных преобразований так называемые логарифмические таблицы. Некоторые из таблиц позволяли получить лишь три знака после запятой: 78 = 101,892. А по наиболее точным таблицам Бригса выходило, что 78 = 101,89209460269048. Соответственно, чем точнее логарифмы, тем точнее результат вычислений. (Исаак Ньютон, изучая движения звезд и планет, дошел в вычислении логарифма до 50 знаков после запятой, но его увлеченность граничила с манией.)
Что ж, опробуем логарифмы в деле.
Точный ответ = 1 198 366 848. Погрешность при вычислении с помощью логарифмов составила примерно 1 миллионную!
Вы можете находить квадратные и кубические корни путем деления логарифма на 2 и 3.
Будь вы Исааком Ньютоном, которому нужно узнать кубический корень из 591, вы бы сначала нашли по логарифмическим таблицам, что 591 = 102,771587. Затем посчитали бы 2,771587 ÷ 3 = 0,923862. И наконец, переведя 100,923862 в обычное число, получили бы ответ: 8,391942. (Если перемножить 8,391942 × 8,391942 × 8,391942, действительно получится 591.)
Мало того что этот ответ точен – логарифмы позволили сэкономить часы, которые бы ушли на мозгодробительные вычисления!
Глоссарий
Существует много слов для обозначения разных математических понятий, однако эта книга и так достаточно информативна. Поэтому я старался, насколько возможно, обходиться без научной терминологии. Однако все же предоставляю краткий справочник по основным математическим терминам.
E
– на экране калькулятора обозначает «экспоненциальную запись», когда результат умножается на степень числа 10.Градус
– единица измерения углов, обозначается символом °. Также в градусах (Кельвина, Цельсия и Фаренгейта) измеряют температуру.