Читаем Математика и криптография полностью

Итак, у нас есть три числа, три разницы: 460, 196 и 36. Рассмотрим наибольший общий делитель этих чисел. Он равен 4. В принципе, на этом можно остановиться, поскольку мы только что нашли длину ключа. Теоретически, ключ может быть длиной в 2 символа (поскольку 4 делится на 2), но можно предположить, что никто не будет кодировать сообщение при помощи такого короткого ключа. Если бы у нас в качестве наибольшего общего делителя получилось число 8, то нам пришлось бы проверить ещё и пятисимвольные сочетания, а потом и все остальные, чтобы убедиться, что длина ключа равна именно 8, а не 4.

Итак, мы определили длину ключа и теперь можем выписать всю шифрограмму в четыре колонки, для каждой из которых применить уже известный нам частотный анализ. Вот как это будет выглядеть:

ТИЪР

УЫМТ

УНРШ

АТПЮ

АКЧЧ

ЙАЙТ

ГЗУШ

МНОЧ

ЖАЧЗ

СЦСЮ

ЙЗЗЫ

ХШЮХ

АФЭБ

ДЦПЯ

Но есть метод быстрее и проще. Он не даёт гарантии мгновенного нахождения ключа, но, по крайней мере, не надо заниматься длительным подсчётом частот. Вернее, подсчитать кое-что надо, но это намного быстрее и менее утомительно. В общем, как обычно это бывает у криптоаналитиков, надо не кидаться с головой в скучные подсчёты (они помогут, но сильно надоедят), а сесть и подумать. Решение придёт.

Итак, мы разобрались с длиной ключа и распределили буквы шифрограммы по столбцам (то есть по алфавитам). Теперь они полностью соответствуют частотам употребления букв (и пробела) в русском языке. Поскольку пробел встречается чуть ли не в два раза чаще, чем самая частая буква русского алфавита «О», то резонно предположить, что самый частый символ в каждом столбце обозначает пробел.

А теперь, если ты внимательно изучишь таблицу, приведённую ранее, то увидишь, что у пробела — код 0. Это значит, что при сложении с ним символ не меняется. Получается, что самая часто встречающаяся буква в каждом столбце и есть буква ключа. Вот это да!

Давай подсчитаем. Вот первый столбец:

«ТУУААЙГМЖСЙХАДХУАЖУЖУШАЗППЕАТПЫБЫГСШГАПУОАХЙДПБАЭЛМ ОУОРПЛЙРМСШБУАОВПОЙЛЩПБАОЭЕБЯЩПНГОПУАЖИБУЛАЖОЖЕЙАВППФЗЙЭ ЖЗА ЙЕУБНБПАЖЫПРВХБАВОБВЯАИЭНЕБ».

Можно заметить, что чаще всего здесь встречается буква «А». Итак, первая буква ключа найдена. Я рекомендую тебе тщательно подсчитать в каждом столбце количество букв и определить наиболее часто встречающуюся, после чего понять ключ.

Если у тебя все получилось, то нашелся ключ — «АЗОТ» (это газ). И теперь можно легко расшифровать секретное послание. Как я уже писал, надо из шифрограммы вычесть ключ по модулю 32. Вот так:

Если всё сделано правильно, то проявится открытое сообщение: «САЛЮТУЮ ТЕБЕ. КАК ВИДИШЬ, В ДЕЛЕ ДЕШИФРОВКИ ШИФРОВ МНОГОАЛФАВИТНОЙ ЗАМЕНЫ ТАКЖЕ НЕТ НИЧЕГО СЛОЖНОГО. НЕОБХОДИМО ПРОСТО ОЧЕНЬ ТЩАТЕЛЬНО ВСЁ РАССЧИТЫВАТЬ, ВЫПОЛНЯТЬ МНОГО АРИФМЕТИЧЕСКИХ ОПЕРАЦИЙ И БЫТЬ КРАЙНЕ ВНИМАТЕЛЬНЫМ. ПОЭТОМУ, КАК И В ПРОШЛЫЙ РАЗ, Я ХОЧУ ЗАЯВИТЬ О ПОЛНОЙ БЕСПОЛЕЗНОСТИ ТАКИХ ШИФРОВ. КАКОЙ БЫ НИ БЫЛА ДЛИНА КЛЮЧА, ШИФРОГРАММА В КОНЕЧНОМ ИТОГЕ БУДЕТ ВЗЛОМАНА ТЕМ, КОМУ ИНТЕРЕСНО ЕЁ СОДЕРЖИМОЕ. НО БЛАГОДАРЯ ЭТОМУ УПРАЖНЕНИЮ ТЫ УЖЕ МОЖЕШЬ ПОНЯТЬ И ПОДУМАТЬ НА ТЕМУ, КАК МОЖНО ИЗМЕНИТЬ ЭТОТ СПОСОБ ШИФРОВАНИЯ, ЧТОБЫ ОН СТАЛ АБСОЛЮТНО НЕВЗЛАМЫВАЕМЫМ. ДЕРЗАЙ».

Что ж, ещё пара моментов:

1. Не всегда пробел будет самым частым символом в столбце. Если не удалось обнаружить ключ, то можно попробовать либо вычитать букву «О», либо попытаться использовать в качестве пробела второй по частоте символ. Ключ часто может быть каким-то словом.

2. Но по-настоящему хитрые шифровальщики никогда не делают ключом слово. Если из самых часто встречаемых символов в каждом столбце получилось не слово, а какое-то бессмысленное буквосочетание, то попробуй все же применить его в качестве ключа. Вполне может быть, что это и есть ключ (всё-таки пробел очень часто встречается).

Теперь ты можешь обдумать и такую проблему: как можно модифицировать этот способ шифрования, чтобы его было не так легко взломать (а это тоже был достаточно лёгкий взлом)? Поразмышляй насчёт длины ключа.

Надеюсь, что на этой неделе тебе понравилось разгадывать зашифрованные сообщения, несмотря на множество вычислений. Ведь по сравнению с тем, чем мы занимались на первой неделе, это был настоящий шифр. А уж на следующей неделе тебя ждёт нечто удивительное. Уверен, что такого тебе ещё не попадалось.

<p><strong>Неделя 3. Стеганография и код Фрэнсиса Бэкона</strong></p>

Представь, что ты получаешь вот такое письмо:

Перейти на страницу:

Все книги серии Библиотека вундеркинда

Головоломки профессора Головоломки
Головоломки профессора Головоломки

Что может быть интереснее и увлекательнее загадок, лабиринтов и головоломок? Ведь иногда простая задачка может завести в тупик и лишить спокойствия на целый день. Но тем не менее, поломав голову над такой трудностью и придя в итоге к правильному решению, вы сможете получить потрясающий заряд энергии и уверенности в собственных силах!Головоломки М.А. Гершензона разнообразны и необычны – это рисунки-лабиринты, оптические иллюзии, загадки по принципу оригами, фокусы, шутки, задания на логику и внимательность. Каждый сможет найти интересную для себя задачу и придумать свое оригинальное решение! Примерьте на себя роль веселого художника или всезнайки, придумавшего собственные загадки, найдите несоответствия и ошибки в обычных художественных текстах, поразмышляйте над головоломками и задачами.

Михаил Абрамович Гершензон

Игры, упражнения для детей / Прочая детская литература / Книги Для Детей
Анатомия на пальцах
Анатомия на пальцах

Организм человека изучают три науки — анатомия, физиология и гигиена. Анатомия изучает строение организма. Физиология изучает функции органов и всего организма в целом.Гигиена изучает условия, необходимые для сохранения и укрепления здоровья.Среди трех этих наук самой трудной для понимания, что в школах, что в высших учебных заведениях, традиционно считается анатомия. Бытует мнение, что анатомию можно одолеть только зубрежкой. Зубрить, зубрить и еще раз зубрить! Иначе никак! На самом же деле это не так. Если рассматривать человеческий организм как единую систему, а не набор отдельных органов, то сразу становится ясно, насколько логично он устроен. Нужно не зубрить, а думать — понимать назначение каждого органа, видеть взаимосвязь между органами и системами и т. п. При таком подходе зубрить ничего не придется.

Андрей Левонович Шляхов

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное