Читаем Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров полностью

Представьте себе базовый инструмент (акция, облигация, валюта, товар и т.д.), цена которого движется вверх или вниз на 1 тик каждую последующую сделку Если мы будем измерять возможную стоимость акции через 100 тиков и рассмот­рим большое количество вариантов, то обнаружим, что полученное распределе­ние результатов — нормальное. Поведение цены в данном случае будет напоми­нать падение шарика через доску Галтона. Если рассчитать цену опциона, исходя из того принципа, что прибыль при покупке или продаже опционов должна быть равна нулю, мы получим биномиальную модель ценообразования опционов (или, коротко, биномиальную модель). Ее иногда также называют моделью Кокса-Росса-Рубинштейна в честь ее разработчиков. Такая цена опциона основывается на его ожидаемой стоимости (его арифметическом математическом ожидании), с тем расче­том, что вы не получаете прибыль, покупая или продавая опцион и удержи­вая его до истечения срока. В этом случае говорят, что опцион справедливо оценен.

Мы не будем углубляться в математику биномиальной модели, а рассмотрим модель фондовых опционов Блэка-Шоулса и модель опционов на фьючерсы Блэ-ка. Вам следует знать, что кроме вышеперечисленных трех моделей есть другие действующие модели ценообразования опционов, которые мы не будут рассмат­ривать, хотя концепции, описанные в этой главе, применимы ко всем моделям ценообразования опционов. Для более подробного изучения математической ос­новы моделей я могу порекомендовать книгу Шелдона Нейтенберга (Volatility and Pricing Strategies by Sheldon Natenberg). Математика модели фондовых опционов Блэка-Шоулса и модели опционов на фьючерсы Блэка, которые мы будем рас­сматривать, взята из книги Нейтенберга. Тем читателям, которые желают больше узнать о концепции оптимального f и опционах, я советую прочитать фундамен­тальный труд Нейтенберга.

Давайте обсудим модель ценообразования фондовых опционов Блэка-Шоулса (далее Блэк-Шоулс). Модель названа в честь ее создателей: Фишера Блэка из Чикагского университета и Мирона Шоулса из M.I.T; впервые она была описана в 1973 году (May — June 1973 Journal of Political Economy). Блэк-Шоулс считается предельной формой биномиальной модели. В биномиальной модели нужно за­дать число тиков, определяющее движение вверх или вниз, прежде чем будет за­фиксировано возможное значение цены. Далее следует небольшая диаграмма, которая поясняет эту мысль.

Текущая цена на первом шаге может пойти в 2-х направлениях. На втором шаге в 4-х направлениях. В биномиальной модели для расчета справедливой цены опци­она вы должны заранее определить, сколько всего периодов использовать. Блэк-Шоулс считается предельной формой биномиальной модели, так как допускает бесконечное число периодов (в теории), то есть Блэк-Шоулс подразу­мевает, что эта небольшая диаграмма будет расширяться до бесконечности. Если вы определите справедливую цену опциона по Блэку-Шоулсу, то получите тот же ответ, что и в случае с биномиальной моделью, если число периодов, используе­мых в биномиальной модели, будет стремиться к бесконечности. (Тот факт, что Блэк-Шоулс является предельной формой биномиальной модели, подразумева­ет, что биномиальная модель появилась первой, но на самом деле сначала появи­лась именно модель Блэка-Шоулса). Справедливая стоимость фондового колл-опциона по Блэку-Шоулсу рассчи­тывается следующим образом:

а пут-опциона:

где С = справедливая стоимость колл-опциона;

Р = справедливая стоимость пут-опциона;

U = цена базового инструмента;

Е = цена исполнения опциона;

Т = доля года, оставшаяся до истечения срока исполнения выраженная десятичной дробью[19];

V= годовая волатильность в процентах;

R = безрисковая ставка;

1п() = функция натурального логарифма;

N() = кумулятивная нормальная функция распределения вероятностей, задаваемая уравнением (3.21).

Для акций, по которым выплачиваются дивиденды, необходимо скорректировать переменную U и отразить текущую цену базового инструмента с учетом стоимос­ти ожидаемых дивидендов:

где Ц = ожидаемая выплата дивиденда 1;

W. = время (доля года, выраженная десятичной дробью) до выплаты L

Модель Блэка-Шоулса позволяет точно рассчитать дельту, то есть первую про­изводную цены опциона. Это мгновенная скорость изменения опциона по отно­шению к изменению U (цены базового инструмента):

(5.05) Дельта колл-опциона = N(H)

(5.06) Дельта пут-опциона = -N(-H)

Эти коэффициенты будут очень важны в Главе 7, когда мы будем рассматривать страхование портфеля.

.

Блэк сделал модель применимой к опционам на фьючерсы, механизм операций с которыми аналогичен операциям с акциями[20]. Модель ценообразования опцио­нов на фьючерсы Блэка аналогична модели фондовых опционов Блэка-Шоулса за исключением переменной Н:

При использовании модели для фьючерсов коэффициент дельта рассчитыва­ется следующим образом:

(5.08) Дельта колл-опциона = EXP(-R * Т) * N(H)

Перейти на страницу:

Похожие книги

Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена
Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена

Руководителям среднего звена часто приходится влиять на подчиненных, равных по должности коллег и даже на босса, и очень важно, чтобы это влияние вело к позитивным переменам. Здесь нужна инициативность, твердость, настойчивость, умение убеждать и немалый энтузиазм. Джон Бальдони, один из самых влиятельных экспертов по вопросам лидерства, по версии Leadership Gurus International, рассказывает, как обрести качества, присущие высокоэффективным лидерам. Благодаря его советам вы стремительно подниметесь по карьерной лестнице и взлетите к самым вершинам. Книга научит вас мыслить стратегически, мотивировать на инновации, объединять людей вокруг общей цели, развивать способности своих сотрудников, конструктивно критиковать и получать откровенную обратную связь от подчиненных, корректно оспаривать мнение вышестоящих руководителей и добиваться своего, стойко переносить неудачи и обращать свои беды в победы.

Джон Бальдони

Деловая литература