Сначала необходимо определить термин «теоретически справедливый», относящийся к цене опционов. Мы будем говорить, что опцион справедливо оценен, если
Математическое ожидание (арифметическое) определяется из уравнения (1.03):
где рi
= вероятность выигрыша или проигрыша попытки i;ai
= выигранная или проигранная сумма попытки i;N =количество возможных исходов (попыток).
Математическое ожидание представляет собой сумму произведений каждого возможного выигрыша или проигрыша и вероятности этого выигрыша или проигрыша. Когда сумма вероятностей рi
больше 1, уравнение 1.03 необходимо разделить на сумму вероятностей рi.Рассмотрим все дискретные изменения цены, которые имеют вероятность осуществления, большую или равную 0,001 в течение срока действия контракта, и по ним определим арифметическое математическое ожидание.
где С = справедливая с теоретической точки зрения стоимость опциона, или арифметическое математическое ожидание;
рi
= вероятность цены i по истечении срока опциона;аi
= внутренняя стоимость опциона (для кол-опциона: рыночная цена инструмента минус цена исполнения опциона;для пут-опциона: цена исполнения минус рыночная цена инструмента), соответствующая базовому инструменту при цене i.
Использование этой модели подразумевает, что, начиная с текущей цены, мы будем двигаться вверх по 1 тику, суммируя значения как в числителе, так и в знаменателе до тех пор, пока вероятность i-ой цены (т.е. р.) не будет меньше 0,001 (вы можете использовать меньшее число, но я считаю, что 0,001 вполне достаточно). Затем, начиная со значения, которое на 1 тик ниже текущей цены, мы будем двигаться вниз по 1 тику, суммируя значения как в числителе, так и в знаменателе, пока вероятность i-ой цены (т.е. рi
) не будет меньше 0,001. Отметьте, что вероятности, которые мы используем, являются 1-хвостыми, т.е., если вероятность больше чем 0,5, мы вычитаем это значение из 1. Интересно отметить, что значения вероятности рi можно менять в зависимости от того, какое распределение применяется, и оно не обязательно должно быть нормальным, то есть пользователь может получить теоретическую справедливую цену опциона дляНеобходимо изменить модель таким образом, чтобы она выражала арифметическое математическое ожидание на дату истечения срока опциона как следующую величину:
где С
pi
= вероятность цены i по истечении срока опциона;аi
=внутренняя стоимость опциона, соответствующая базовому инструменту при цене i;R = текущая безрисковая ставка;
Т = доля года, оставшаяся до истечения срока исполнения, выраженная десятичной дробью.