Читаем Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров полностью

Y = разность между арифметическим математическим ожи­данием базового инструмента (согласно уравнению (5.10)) и текущей ценой.

Для одиночной короткой опционной позиции это уравнение преобразуется в:

где HPR(T, U) == HPR для данного тестируемого значения Т и U;

f= тестируемое значение f;

S = текущая цена опциона;

Z(T, U - Y)= теоретическая цена опциона, когда цена базового инструмента равна U - Y, а время, оставшееся до срока истечения, равно Т;

Р(Т, U) = вероятность того, что базовый инструмент равен U, когда время, оставшееся до истечения срока исполнения,

равно Т,

Y = разность между арифметическим математическим ожиданием базового инструмента (согласно уравнению (5.10)) и текущей ценой.

Обратите внимание, что единственным отличием уравнения (5.14) для одиноч­ной длинной опционной позиции от уравнения (5.20) для одиночной короткой позиции является выражение (Z(T, U-Y)/S-1), которое заменяется на (1-Z(T, U - Y) / S). Все остальное в отношении одиночной длинной опционной позиции верно и для одиночной опционной короткой позиции.

Одиночная позиция по базовому инструменту

В главе 3 мы подробно рассмотрели математику поиска оптимального f пара­метрическим способом. Теперь мы можем использовать тот же метод и для

одиночной длинной опционной позиции с учетом нового HPR, которое рассчи­тывается по уравнению (3.30):

где HPR(U) = HPR для данного U;

L= ассоциированное P&L

W = ассоциированное P&L худшего случая (это всегда отрица­тельное значение);

f == тестируемое значение f;

Р = ассоциированная вероятность.

Для длинной позиции переменная L, т.е. ассоциированное P&L, определяется как разность между ценой базового инструмента U и ценой S.

(5.21 а) L для длинной позиции = U - S

Для короткой позиции ассоциированное P&L рассчитывается наоборот:

(5.216) L для короткой позиции = S - U,

где S = текущая цена базового инструмента;

U = цена базового инструмента для данного HPR.

Мы можем также рассчитать оптимальное f для одиночной позиции по базовому инструменту, используя уравнение (5.14). При этом надо иметь в виду, что опти­мальное f может получиться больше 1.

Пусть цена базового инструмента равна 100, и мы ожидаем пять результатов:


РезультатВероятностьP&L
1100,1510
1050,305
1000,500
950,25-5
900,10-10


Отметьте, что исходя из уравнения (5.10) наше арифметическое математическое ожидание по базовому инструменту составляет 100,576923077. Это означает, что переменная Y для (5.14) равна 0,576923077, так как 100,576923077-100= = 0,576923077. Если рассчитать оптимальное f, используя столбец P&L и уравнение (3.30), мы получим f= 1,9, что соответствует 1 единице на каждые 52,63 дол­лара на счете. Если в уравнении (5.14) использовать данные из столбца «Результат», тогда пе­ременная S равна 100. В этом случае мы не вычитаем значение Y (арифметическое математическое ожидание базового инструмента минус его текущая цена) из U при определении переменной Z(T, U - Y), и получаем оптимальное f около 1,9, что соответствует 1 единице на каждые 52,63 доллара на счете, так как

100 /1,9=52,63.


Если вычесть значение Y в выражении Z(T, U - Y), являющемся элементом уравнения (5.14), мы получим математическое ожидание по базовому инструменту, равное его текущему значению, и поэтому f не будет оптимальным. Тем не менее нам следует вычесть значение Y в Z(T, U - Y) для того, чтобы соответствовать расче­там цен опционов, а также формуле «пут-колл» паритета. Если мы будем использовать уравнение (3.30) вместо уравнения (5.14), тогда из каждого значения U в (5.21а) и (5.216) следует вычесть значение Y, то есть надо вычесть Y из каждого P&L, что опять же создает ситуацию, когда нет положительного математического ожидания, и поэтому нет оптимального значения f. Все вышесказанное означает, что если мы откроем позицию по базовому инстру­менту, не имея никаких представлений о направлении движения его цены, то не по­лучим положительного математического ожидания (как происходит с некоторыми опционами) и поэтому не найдем оптимального f. Мы можем получить оптимальное f только в том случае, когда математическое ожидание положительное. Это произой­дет, если базовый инструмент «в тренде».

Перейти на страницу:

Похожие книги

Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена
Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена

Руководителям среднего звена часто приходится влиять на подчиненных, равных по должности коллег и даже на босса, и очень важно, чтобы это влияние вело к позитивным переменам. Здесь нужна инициативность, твердость, настойчивость, умение убеждать и немалый энтузиазм. Джон Бальдони, один из самых влиятельных экспертов по вопросам лидерства, по версии Leadership Gurus International, рассказывает, как обрести качества, присущие высокоэффективным лидерам. Благодаря его советам вы стремительно подниметесь по карьерной лестнице и взлетите к самым вершинам. Книга научит вас мыслить стратегически, мотивировать на инновации, объединять людей вокруг общей цели, развивать способности своих сотрудников, конструктивно критиковать и получать откровенную обратную связь от подчиненных, корректно оспаривать мнение вышестоящих руководителей и добиваться своего, стойко переносить неудачи и обращать свои беды в победы.

Джон Бальдони

Деловая литература