Наивная уверенность в том, что формализация одного или двух отношений выделенных из естественного языка позволит создать универсальные средства получения нового научного знания (а ведь именно в этом качестве мыслилось функционирование математической логики в рамках программы, намеченной Д. Гильбертом, а также Б. Расселом и А. Уайтхедом в [Whitehead, Russell, 1910; 1912; 1913] стала исчезать после доказательства К. Геделем теоремы о неполноте арифметики и привело в настоящее время к существенно иному пониманию места формальных систем в исследовании принципов человеческого мышления15
. Параллельно происходил процесс осознания роли семантики и прагматики в исследовании формальных систем [Семантика… 1981], что привело к построению огромного числа модальных логик [см., например: Фейс, 1974; Неклассическая… 1970]. Отметим, однако, что интуитивно приемлемая теоретико-множественная интерпретация модальных логик существенно отличается от теоретико-множественной интерпретации логики классов [Сергеев, 1984], а построение такой интерпретации в ряде случаев является весьма нетривиальной задачей.Выбор такого отношения, как предикация, в качестве основы построения логики отнюдь не исчерпывает всех возможностей и, по-видимому, приводит к сильному обеднению ее содержания. А в рамках неевропейских культурных традиций известны логические системы, основанные на выделении других логических отношений в качестве базисных.
Особенно богатой в этом смысле является индийская логическая традиция16
.По-видимому, целесообразно рассматривать любую формальную логическую систему как «знаковую систему». Эту систему можно представить себе как результат применения своего рода «гомоморфизма», упрощающего систему отношений, существующую в естественном языке, т.е. искусственный язык с более простой грамматикой и семантикой, снимающей некоторые неопределенности и неоднозначности, существующие в естественном языке. Ряд выразительных возможностей естественного языка при этом утрачивается.
Естественно-языковую аргументацию можно рассматривать как средство трансформации знаний17
, выраженных естественно-языковыми средствами [Сергеев, 1984]. Соответственно правила вывода в формальной системе трансформируют знания, выраженные средствами формальной системы, аксиомы же представляют из себя «базисное знание». Однако нетрудно заметить, что при таком подходе к формальной логике в центре внимания оказываются вопросы семантики и концептуального анализа (в смысле Р. Шенка), которую традиционная математическая логика вообще пыталась изгнать из рассмотрения.Отсутствует в традиционной математической логике и понятие модальности, т.е. способа существования объекта. Между тем логика существования является весьма сложным и запутанным предметом, уже в древности порождавшим самые разнообразные взгляды18
. Способ существования математических объектов – по сей день весьма темный вопрос; ведь именно с ним связаны столь острые дискуссии об основаниях математики – например, борьба между «интуиционистами» и «формалистами» [Representation… 1975]. Разрубание «гордиева узла» путем признания только двух способов существования оппозиций «истина» – «ложь» существенно примитивизирует эту проблему.Задачей настоящей работы является исследование формальных логических систем, в также возникающих в этих системах парадоксов с точки зрения семиотики.
Как для современной математической логики так и для семиотики основополагающими являются работы Г. Фреге [Фреге, 1977; Фреге, 1978]. Именно в этих статьях и была произведена чрезвычайно важная работа по логической семантике, сделавшая возможной быстрый прогресс математической логики, здесь же были выработаны и обоснованы основные понятия семиотики. На основании анализа естественно-языковых примеров Фреге сумел привести ясные логические аргументы для различения смысла, имени и денотата слова, провести разделение в логическом употреблении слов «вещь» и «понятие», однако это разделение не нашло в полной мере отражения в формальной логике. Основой формализма, исчисления предикатов, и исчисления высказываний стала другая идея Фреге.
В работе «Смысл и денотат» Фреге рассмотрел вопрос о денотате предложения. Он писал: «Итак, мы установили, что вопрос о денотате предложения тесно связан с вопросом о денотатах его частей, а этот вопрос можно ставить тогда, когда нас интересует истинно предложение или ложно. Мы вынуждены, таким образом, признать, что денотатом предложения является его истинностное значение – “истина” или “ложь”, других истинностных значений не бывает» [Фреге, 1977, с. 190]. Эта идея, представлялась в высшей степени спорной уже в то время, когда Фреге писал свои статьи.