Читаем Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ полностью

Представляет интерес на нескольких примерах проанализировать с семиотической точки зрения функционирование формально-логических систем. Рассмотрим фрагмент текста работы Гильберта и Аккермана, в котором вводятся аксиомы узкого исчисления предикатов [Гильберт, Аккерман, 1947, с. 97].

«К этим аксиомам мы присоединим теперь в качестве второй группы две аксиомы для “все” и “существует”»:

e) (x) F (x)->F (y);

f) F (y) -> (Ex) F (x).

Первая из этих аксиом означает «Если предикат F выполняется для всех x, то он выполняется также для любого y».

Вторая формула читается так: «Если предмет F выполняется для какого-нибудь y, то существует x, для которого выполняется F».

Этот текст особенно интересен по следующим причинам:

1. В нем вводятся аксиомы.

2. Поясняется их естественно-языковое содержание, т.е. вводится способ понимания знаковой системы.

По замыслу основателей математической логики «…чего удалось достичь благодаря языку формул в математике, то же должно быть получено с его помощью и в теоретической логике, а именно: точная научная трактовка ее предмета. Логические связи, которые существуют между суждениями, понятиями и т.д. находят свое выражение в формулах, толкование которых свободно от неясностей, какие легко могли бы возникнуть при словесном выражении» [Гильберт, Аккерман, 1947, с. 17].

Именно поэтому особенно интересно сопоставить знаковое и словесное выражение для аксиом формальной системы.

Рассматривая приведенный выше фрагмент логического текста нетрудно заметить следующие его особенности:

знак F (y) в формулах e) и f) трактуется по-разному и имеет два смысла. В е) – F выполняется для любого y. В f) F выполняется для какого-нибудь y.

По-видимому, различение этих смыслов связано с местом F (y) в формулах – в одном случае – на месте консеквента, в другом – на месте антицедента. Различие в смысле, однако, очень велико и никак специально не оговорено.

Совершенно неясно, что имеется в виду в этих текстах под x и y. То ли это объекты, принадлежащие области индивидуумов, то ли это имена объектов, то ли имена ролей [Дорфман, Сергеев, 1983]. Неясно, различны ли объекты, обозначенные разными именами, а также какие из них потенциальны, а какие актуальны. По-видимому, х обозначает потенциальный объект, а y – актуальный.

Уже такой поверхностный анализ показывает, что чтение указанных формул предполагает определенный способ понимания формул, о котором в тексте ничего не говорится, хотя этот текст вводит аксиомы, т.е., обязан содержать интуитивно исчерпывающее описание способа понимания формул. Аналогичные примеры в [Гильберт, Аккерман, 1947] можно с легкостью умножить.

К сожалению, подобное пренебрежение семиотическими различениями и даже сознательная эксплуатация возникающих двусмысленностей заметно не только в «Основах теоретической логики» [Гильберт, Аккерман, 1947], являющейся одной из первых работ по математической логике.

В качестве другого примера рассмотрим язык SELF, предложенный Шмульяном для формализации феномена «самоописания», присутствующий в известном логическом «парадоксе лжеца» [Манин, 1979, с. 78].

«Алфавит SELF: E, * * (симметричные кавычки).

r (отношение ранга I); ¬)(отрицание).

Синтаксис SELF. К отмеченным выражениям принадлежат: ярлыки, экспонаты, формулы и имена.

Ярлык любого выражения Р – это *Р* (Р в кавычках).

Экспонат любого выражения Р – это Р *Р* («вещь с ярлыком»).

Формулы – это выражения вида r E… E *P* и ¬ r E … E *Р*.

Здесь Е стоит на К > 0 местах после r. Сокращенная запись:

r Ек *Р* или ¬ r Ек *Р*. Наконец, введем бинарное отношение на множестве всех выражений «быть именем». Оно определяется рекурсивно:

1. Ярлык Р является именем Р.

2. Если Р – имя Q, то ЕР – имя экспоната Q, т.е. имя выражения Q *Q*».

После этих определений утверждается, что «Е*Е* является одним из двух своих имен. Точно так же формула r Е* r Е говорит о самой себе» [Манин, 1979, с. 79]. Язык SELF представляется в семиотическом плане намного более продвинутым, чем формальный язык узкого исчисления предикатов. Он эксплицирует ряд семиотических различий, позволяющих описывать весьма тонкие логические конструкции.

Семиотический анализ приведенного текста, однако, немедленно выявляет тот факт, что символ Е в этом языке употреблен в двух совершенно различных смыслах:

1. Как семиотический оператор действующий на имя, т.е. выражение *Q*, и превращающий его в Е *Q* – имя экспоната Q в соответствии с (b)).

2. Как индивидуум, являющийся «отмеченным выражением» (его можно заключать в скобках).

Ясно, что в первом смысле Е как семиотический оператор является элементом метатекста, а во втором смысле – элементом текста.

Перейти на страницу:

Похожие книги

115 сочинений с подготовительными материалами для младших школьников
115 сочинений с подготовительными материалами для младших школьников

Дорогие друзья!Сочинение – это один из видов работы по развитию речи, который предполагает самостоятельное, продуманное изложение вами своих мыслей в соответствии с требуемой темой.Работа над сочинением развивает мышление, речь, позволяет выразить свой взгляд на мир. Такой вид работы способствует осознанию окружающего мира, действительности, самих себя. Кроме того, сочинение учит аргументированно доказывать и отстаивать свою точку зрения.В данном пособии вы найдёте методику написания сочинений, а также различные виды сочинений с планами и подготовительными материалами.Не забывайте, что сочинение – это прежде всего творческая работа, которая не терпит шаблона. Советуем вам не использовать представленные в пособии сочинения для бездумного, механического переписывания их в свои тетради. Наши сочинения – это возможные варианты раскрытия определённых тем, которые, надеемся, помогут вам при создании самостоятельных текстов.Желаем успехов!

Ольга Дмитриевна Ушакова

Детская образовательная литература / Школьные учебники и пособия, рефераты, шпаргалки / Книги Для Детей