Читаем Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии полностью

Аналогично, если точка Р движется налево, мы видим, что расстояние от Р до прямой l увеличивается. В этом случае говорят, что прямые и расходятся. Поэтому, когда в гиперболической геометрии имеются прямые, расстояние между которыми остается постоянным, то такие прямые не могут быть параллельны. Иначе это противоречило бы пятому постулату гиперболической геометрии. Прямая, находящаяся на постоянном расстоянии от данной прямой, называется эквидистантой.

Пифагор, треугольники и длины

Теперь мы рассмотрим результаты, связанные с треугольниками, кругами и отношениями между площадью и длинами. Эти результаты включают теорему Пифагора, и мы увидим, как она работает в гиперболической геометрии на примере некоторых задач, знакомых нам со школы.

Треугольники

Формула для площади треугольника в евклидовой геометрии всегда одинакова для любого треугольника: s = (b·h/2) то есть площадь равна половине произведения основания треугольника на высоту. В основе этого выражения лежит тот факт, что сумма внутренних углов треугольника всегда равна 180°.

Но в гиперболической геометрии, как ни странно, площадь треугольника зависит от суммы его углов. Как мы уже говорили, в гиперболической геометрии сумма углов треугольника всегда меньше 180°. Следовательно, сумма углов в четырехугольнике также будет меньше 360°.

В евклидовой геометрии если три угла A, В и С одного треугольника и три угла А', В' и С' другого треугольника соответственно равны, то эти треугольники являются подобными. Это не означает, что их соответствующие стороны имеют одинаковую длину. В гиперболической геометрии у таких треугольников с соответственно равными углами будут равны и соответствующие стороны.

Теперь рассмотрим этот случай более подробно. Пусть А, В и С — углы одного треугольника. Их сумма меньше двух прямых углов (180°), и поэтому разность 180 — (А В + С) будет положительна. Эта разность называется угловым дефектом, и мы имеем следующий результат: площадь любого треугольника пропорциональна его угловому дефекту.

Если мы обозначим через k коэффициент пропорциональности, то формула для площади треугольника (S) будет выглядеть следующим образом:

так что максимальное значение площади треугольника равно  · k2 (в гиперболической геометрии не бывает треугольников с бесконечной площадью). Мы не приводим доказательство этого результата, так как оно достаточно сложное. Мы лишь записали окончательную формулу, какой бы странной она ни казалась.

Выражение для площади треугольника подтверждает то, о чем мы говорили раньше. На самом деле в евклидовом случае два треугольника с одинаковыми углами не обязательно имеют одинаковую площадь и, следовательно, не обязательно равны. Однако в гиперболическом мире одинаковые углы (и, следовательно, одинаковый угловой дефект) означают одинаковый размер.

Также в гиперболической геометрии чем больше треугольник, тем больше его площадь и тем меньше сумма его углов. Для очень малых площадей (для бесконечно малых, в терминах математики) сумма углов треугольника стремится к 180°. Таким образом, можно сказать, что геометрия Евклида является предельным случаем гиперболической геометрии.

Иоганн Генрих Ламберт, о котором мы уже упоминали в третьей главе, еще в середине XVIII в. заметил, что, отказавшись от пятого постулата Евклида, он получил следующий результат: сумма углов треугольника увеличилась, приближаясь к 180° по мере уменьшения площади треугольника.

Круги

В школьной геометрии изучаются не только треугольники. В школьную программу входят и другие геометрические фигуры, например, круги, поэтому каждый знает, что такое радиус круга. В геометрии Евклида длина окружности С пропорциональна радиусу r. Это соотношение включает в себя знаменитое число :

С = 2··r.

Однако, в гиперболической геометрии длина окружности рассчитывается по следующей формуле:

В этом выражении k является коэффициентом пропорциональности, a sh — так называемым гиперболическим синусом. Число е нам уже знакомо, с точностью до нескольких десятичных знаков оно записывается как 2,718281828 …Также напомним, что

Теперь возьмем предыдущее выражение

и разложим его в ряд:

Таким образом получим новое выражение для длины окружности в виде бесконечной суммы слагаемых.

Если мы посмотрим на вторую часть выражения

то заметим, что при очень малых r множитель будет стремиться к 1, и поэтому формула сведется к известному выражению евклидовой геометрии:

С = 2··r.

Это можно доказать с помощью простых вычислений. Для простоты мы будем измерять расстояния в километрах. Возьмем выражение для длины окружности в виде степенного ряда. Пусть коэффициент k имеет значение = 1017, и мы хотим посчитать длину окружности радиуса 100 км.

Подставим эти значения в выражение

а также в евклидову формулу 2·r, и мы увидим, что разница составляет лишь 10-9.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже